Browse > Article
http://dx.doi.org/10.1007/s12540-018-0133-4

Influences on Distribution of Solute Atoms in Cu-8Fe Alloy Solidification Process Under Rotating Magnetic Field  

Zou, Jin (Jiangxi Key Laboratory for Advanced Copper and Tungsten Materials, Jiangxi Academy of Sciences)
Zhai, Qi-Jie (Shanghai Key Laboratory of Modern Metallurgy and Materials Processing, Shanghai University)
Liu, Fang-Yu (Jiangxi Key Laboratory for Advanced Copper and Tungsten Materials, Jiangxi Academy of Sciences)
Liu, Ke-Ming (Jiangxi Key Laboratory for Precision Drive and Control, Nanchang Institute of Technology)
Lu, De-Ping (Jiangxi Key Laboratory for Advanced Copper and Tungsten Materials, Jiangxi Academy of Sciences)
Publication Information
Metals and materials international / v.24, no.6, 2018 , pp. 1275-1284 More about this Journal
Abstract
A rotating magnetic field (RMF) was applied in the solidification process of Cu-8Fe alloy. Focus on the mechanism of RMF on the solid solution Fe(Cu) atoms in Cu-8Fe alloy, the influences of RMF on solidification structure, solute distribution, and material properties were discussed. Results show that the solidification behavior of Cu-Fe alloy have influenced through the change of temperature and solute fields in the presence of an applied RMF. The Fe dendrites were refined and transformed to rosettes or spherical grains under forced convection. The solute distribution in Cu-rich phase and Fe-rich phase were changed because of the variation of the supercooling degree and the solidification rate. Further, the variation in solute distribution was impacted the strengthening mechanism and conductive mechanism of the material.
Keywords
Cu-Fe alloy; Rotating magnetic field; Solidification behavior; Solute distribution;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S.F. Abbas, S.J. Seo, K.T. Park, B.S. Kim, T.S. Kim, J. Alloy. Compd. 720, 8-16 (2017)   DOI
2 J.D. Verhoeven, S.C. Chueh, E.D. Gibson, J. Mater. Sci. 24, 1748-1752 (1989)   DOI
3 Q. Dong, L. Shen, F. Cao, Y. Jia, M. Wang, Acta Metall. Sin. Chin. Ed. 50, 1224-1230 (2014)
4 Z. Xie, H. Gao, J. Wang, B. Sun, Mater. Sci. Eng. A 529, 388-392 (2011)   DOI
5 K. Liu, Z. Huang, X. Zhang, D. Lu, A. Atrens, H. Zhou, Y. Yin, J. Yu, W. Guo, Mater. Sci. Eng. A 673, 1-7 (2016)   DOI
6 G.H. Bao, Y. Chen, J.E. Ma, Y.T. Fang, L. Meng, S.M. Zhao, X. Wang, J.B. Liu, J. Zhejiang Univ. A 16, 622-629 (2015)
7 M. Slimi, M. Azabou, L. Escoda, J.J. Sunol, M. Khitouni, Powder Technol. 266, 262-267 (2014)   DOI
8 H.R. Jo, J.T. Kim, S.H. Hong, Y.S. Kim, H.J. Park, W.J. Park, M.P. Jin, K.B. Kim, J. Alloy. Compd. 707, 184-188 (2016)
9 G.D. Shi, in International Conference on Electronics, Electrical Engineering and Information Science, pp. 957-965
10 Y. Watanabe, M. Kato, A. Sato, J. Mater. Sci. 26, 4307-4312 (1991)   DOI
11 D. Watanabe, C. Watanabe, R. Monzen, J. Mater. Sci. 43, 3946-3953 (2008)   DOI
12 Z.W. Wu, J.J. Liu, Y. Chen, L. Meng, J. Alloy. Compd. 467, 213-218 (2009)   DOI
13 L. Qu, E. Wang, X. Zuo, L. Zhang, J. He, Mater. Sci. Eng. A 528, 2532-2537 (2011)   DOI
14 N.V.R. Kumar, J.J. Blandin, C. Desrayaud, F. Montheillet, M. Suery, Mater. Sci. Eng. A 359, 150-157 (2003)   DOI
15 N.D. Stepanov, A.V. Kuznetsov, G.A. Salishchev, N.E. Khlebova, V.I. Pantsyrny, Mater. Sci. Eng. A 564, 264-272 (2013)   DOI
16 K.M. Liu, D.P. Lu, H.T. Zhou, Z.B. Chen, A. Atrens, L. Lu, Mater. Sci. Eng. A 584, 114-120 (2013)   DOI
17 X. Zuo, L. Qu, C. Zhao, B. An, E. Wang, R. Niu, Y. Xin, J. Lu, K. Han, J. Alloy. Compd. 662, 355-360 (2016)   DOI
18 J. Nakashima, J. Fukuda, A. Kiyose, T. Kawase, Y. Ohtani, M. Doki, K. Fujisaki, Tetsu-to-Hagane 93, 281-288 (2007)   DOI
19 C. Li, Y.D. Yu, Mater. Sci. Eng. A 559, 22-28 (2013)   DOI
20 E. Cadirli, H. Kaya, D. Rabiger, S. Eckert, M. Gunduz, J. Alloy. Compd. 647, 471-480 (2015)   DOI
21 H. Kaya, E. Cadirli, M. Gunduz, D. Rabiger, S. Eckert, Int. J. Mater. Res. 107, 362-371 (2016)   DOI
22 J.R. Bowen, A. Gholinia, Mater. Sci. Eng. A 287, 87-99 (2000)   DOI
23 H. Li, J. Jie, H. Chen, P. Zhang, T. Wang, T. Li, Mater. Sci. Eng. A 624, 140-147 (2015)   DOI
24 H. Wei, F. Xia, S. Qian, M. Wang, J. Mater. Process. Technol. 240, 344-353 (2017)   DOI
25 W.Z. Jin, W. Zhang, T.J. Li, G.M. Yin, Adv. Mater. Res. 189-193, 3789-3794 (2011)   DOI
26 J. Jin, K.F. Kobayashi, P.H. Shingu, Metall. Mater. Trans. A 15, 307-312 (1984)
27 Y.D. Yu, C.X. Li, Mater. Des. 44, 17-22 (2013)   DOI
28 R. Rakoczy, Chem. Eng. Process. 49, 42-50 (2010)   DOI
29 M.C. Flemings, Solidification Processing (McGraw-Hill, New York, 1974), pp. 2121-2134
30 Z. Chen, X. Chen, J. Li, S. Wen, Chin. Sci. Bull. 53, 2575-2581 (2008)
31 K.R. Anderson, J.R. Groza, Metall. Mater. Trans. A 32, 1211-1224 (2001)   DOI
32 E. Guth, J. Appl. Phys. 16, 20-25 (1945)   DOI
33 K. Liu, D. Lu, H. Zhou, A. Atrens, Z. Chen, J. Zou, S. Zeng, J. Alloy. Compd. 500, 27-32 (2010)
34 S.F. Abbas, T.S. Kim, J. Alloy. Compd. 723, 129-135 (2017)   DOI