DOI QR코드

DOI QR Code

Influences on Distribution of Solute Atoms in Cu-8Fe Alloy Solidification Process Under Rotating Magnetic Field

  • Zou, Jin (Jiangxi Key Laboratory for Advanced Copper and Tungsten Materials, Jiangxi Academy of Sciences) ;
  • Zhai, Qi-Jie (Shanghai Key Laboratory of Modern Metallurgy and Materials Processing, Shanghai University) ;
  • Liu, Fang-Yu (Jiangxi Key Laboratory for Advanced Copper and Tungsten Materials, Jiangxi Academy of Sciences) ;
  • Liu, Ke-Ming (Jiangxi Key Laboratory for Precision Drive and Control, Nanchang Institute of Technology) ;
  • Lu, De-Ping (Jiangxi Key Laboratory for Advanced Copper and Tungsten Materials, Jiangxi Academy of Sciences)
  • Received : 2017.11.23
  • Accepted : 2018.04.24
  • Published : 2018.11.20

Abstract

A rotating magnetic field (RMF) was applied in the solidification process of Cu-8Fe alloy. Focus on the mechanism of RMF on the solid solution Fe(Cu) atoms in Cu-8Fe alloy, the influences of RMF on solidification structure, solute distribution, and material properties were discussed. Results show that the solidification behavior of Cu-Fe alloy have influenced through the change of temperature and solute fields in the presence of an applied RMF. The Fe dendrites were refined and transformed to rosettes or spherical grains under forced convection. The solute distribution in Cu-rich phase and Fe-rich phase were changed because of the variation of the supercooling degree and the solidification rate. Further, the variation in solute distribution was impacted the strengthening mechanism and conductive mechanism of the material.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China, Natural Science Foundation of Jiangxi Province

References

  1. S.F. Abbas, S.J. Seo, K.T. Park, B.S. Kim, T.S. Kim, J. Alloy. Compd. 720, 8-16 (2017) https://doi.org/10.1016/j.jallcom.2017.05.244
  2. J.D. Verhoeven, S.C. Chueh, E.D. Gibson, J. Mater. Sci. 24, 1748-1752 (1989) https://doi.org/10.1007/BF01105700
  3. Q. Dong, L. Shen, F. Cao, Y. Jia, M. Wang, Acta Metall. Sin. Chin. Ed. 50, 1224-1230 (2014)
  4. Z. Xie, H. Gao, J. Wang, B. Sun, Mater. Sci. Eng. A 529, 388-392 (2011) https://doi.org/10.1016/j.msea.2011.09.047
  5. K. Liu, Z. Huang, X. Zhang, D. Lu, A. Atrens, H. Zhou, Y. Yin, J. Yu, W. Guo, Mater. Sci. Eng. A 673, 1-7 (2016) https://doi.org/10.1016/j.msea.2016.07.017
  6. G.H. Bao, Y. Chen, J.E. Ma, Y.T. Fang, L. Meng, S.M. Zhao, X. Wang, J.B. Liu, J. Zhejiang Univ. A 16, 622-629 (2015)
  7. M. Slimi, M. Azabou, L. Escoda, J.J. Sunol, M. Khitouni, Powder Technol. 266, 262-267 (2014) https://doi.org/10.1016/j.powtec.2014.03.064
  8. H.R. Jo, J.T. Kim, S.H. Hong, Y.S. Kim, H.J. Park, W.J. Park, M.P. Jin, K.B. Kim, J. Alloy. Compd. 707, 184-188 (2016)
  9. G.D. Shi, in International Conference on Electronics, Electrical Engineering and Information Science, pp. 957-965
  10. Y. Watanabe, M. Kato, A. Sato, J. Mater. Sci. 26, 4307-4312 (1991) https://doi.org/10.1007/BF00543643
  11. D. Watanabe, C. Watanabe, R. Monzen, J. Mater. Sci. 43, 3946-3953 (2008) https://doi.org/10.1007/s10853-007-2373-4
  12. Z.W. Wu, J.J. Liu, Y. Chen, L. Meng, J. Alloy. Compd. 467, 213-218 (2009) https://doi.org/10.1016/j.jallcom.2007.12.020
  13. L. Qu, E. Wang, X. Zuo, L. Zhang, J. He, Mater. Sci. Eng. A 528, 2532-2537 (2011) https://doi.org/10.1016/j.msea.2010.12.015
  14. N.D. Stepanov, A.V. Kuznetsov, G.A. Salishchev, N.E. Khlebova, V.I. Pantsyrny, Mater. Sci. Eng. A 564, 264-272 (2013) https://doi.org/10.1016/j.msea.2012.11.121
  15. K.M. Liu, D.P. Lu, H.T. Zhou, Z.B. Chen, A. Atrens, L. Lu, Mater. Sci. Eng. A 584, 114-120 (2013) https://doi.org/10.1016/j.msea.2013.07.016
  16. X. Zuo, L. Qu, C. Zhao, B. An, E. Wang, R. Niu, Y. Xin, J. Lu, K. Han, J. Alloy. Compd. 662, 355-360 (2016) https://doi.org/10.1016/j.jallcom.2015.12.046
  17. N.V.R. Kumar, J.J. Blandin, C. Desrayaud, F. Montheillet, M. Suery, Mater. Sci. Eng. A 359, 150-157 (2003) https://doi.org/10.1016/S0921-5093(03)00334-4
  18. J. Nakashima, J. Fukuda, A. Kiyose, T. Kawase, Y. Ohtani, M. Doki, K. Fujisaki, Tetsu-to-Hagane 93, 281-288 (2007) https://doi.org/10.2355/tetsutohagane.93.281
  19. C. Li, Y.D. Yu, Mater. Sci. Eng. A 559, 22-28 (2013) https://doi.org/10.1016/j.msea.2012.06.065
  20. E. Cadirli, H. Kaya, D. Rabiger, S. Eckert, M. Gunduz, J. Alloy. Compd. 647, 471-480 (2015) https://doi.org/10.1016/j.jallcom.2015.05.162
  21. H. Kaya, E. Cadirli, M. Gunduz, D. Rabiger, S. Eckert, Int. J. Mater. Res. 107, 362-371 (2016) https://doi.org/10.3139/146.111350
  22. J.R. Bowen, A. Gholinia, Mater. Sci. Eng. A 287, 87-99 (2000) https://doi.org/10.1016/S0921-5093(00)00834-0
  23. H. Li, J. Jie, H. Chen, P. Zhang, T. Wang, T. Li, Mater. Sci. Eng. A 624, 140-147 (2015) https://doi.org/10.1016/j.msea.2014.11.064
  24. W.Z. Jin, W. Zhang, T.J. Li, G.M. Yin, Adv. Mater. Res. 189-193, 3789-3794 (2011) https://doi.org/10.4028/www.scientific.net/AMR.189-193.3789
  25. J. Jin, K.F. Kobayashi, P.H. Shingu, Metall. Mater. Trans. A 15, 307-312 (1984)
  26. Y.D. Yu, C.X. Li, Mater. Des. 44, 17-22 (2013) https://doi.org/10.1016/j.matdes.2012.07.034
  27. H. Wei, F. Xia, S. Qian, M. Wang, J. Mater. Process. Technol. 240, 344-353 (2017) https://doi.org/10.1016/j.jmatprotec.2016.10.012
  28. R. Rakoczy, Chem. Eng. Process. 49, 42-50 (2010) https://doi.org/10.1016/j.cep.2009.11.004
  29. Z. Chen, X. Chen, J. Li, S. Wen, Chin. Sci. Bull. 53, 2575-2581 (2008)
  30. M.C. Flemings, Solidification Processing (McGraw-Hill, New York, 1974), pp. 2121-2134
  31. K.R. Anderson, J.R. Groza, Metall. Mater. Trans. A 32, 1211-1224 (2001) https://doi.org/10.1007/s11661-001-0130-x
  32. E. Guth, J. Appl. Phys. 16, 20-25 (1945) https://doi.org/10.1063/1.1707495
  33. K. Liu, D. Lu, H. Zhou, A. Atrens, Z. Chen, J. Zou, S. Zeng, J. Alloy. Compd. 500, 27-32 (2010)
  34. S.F. Abbas, T.S. Kim, J. Alloy. Compd. 723, 129-135 (2017) https://doi.org/10.1016/j.jallcom.2017.06.209

Cited by

  1. Effects of an Alternating Magnetic Field/Ag Multi-Alloying Combined Solidification Process on Cu–14Fe Alloy vol.11, pp.12, 2018, https://doi.org/10.3390/ma11122501
  2. Controlling Segregation Behavior of Primary Si in Hypereutectic Al-Si Alloy by Electromagnetic Stirring vol.10, pp.9, 2018, https://doi.org/10.3390/met10091129