• 제목/요약/키워드: Crystalline 3C-SiC

검색결과 328건 처리시간 0.031초

극한 환경 MEMS용 다결정 3C-SiC 박막의 성장 (Growing of polycrystalline 3C-SiC thin films for harsh environment MEMS applications.)

  • 김강산;정귀상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 하계학술대회 논문집 Vol.7
    • /
    • pp.408-409
    • /
    • 2006
  • The polycrystalline 3C-SiC thin films heteroepitaxially grown by LPCVD method using single precursor 1. 3-disilabutane at $850^{\circ}C$. The crystallinity of the 3C-SiC thin film. was analyzed by XPS. Residual strain was investigated by Raman scattering. The surface morphology and voids between SiC and $SiO_2$ were measured by SEM. The grown poly 3C-SiC thin film is very good crystalline quality, surface like mirror, and low defect and strain. Therefore, the polycrystalline 3C-SiC is suitable for harsh environment MEMS applications.

  • PDF

Characteristics of Polycrystalline β-SiC Films Deposited by LPCVD with Different Doping Concentration

  • Noh, Sang-Soo;Lee, Eung-Ahn;Fu, Xiaoan;Li, Chen;Mehregany, Mehran
    • Transactions on Electrical and Electronic Materials
    • /
    • 제6권6호
    • /
    • pp.245-248
    • /
    • 2005
  • The physical and electrical properties of polycrystalline $\beta$-SiC were studied according to different nitrogen doping concentration. Nitrogen-doped SiC films were deposited by LPCVD(1ow pressure chemical vapor deposition) at $900^{\circ}C$ and 2 torr using $100\%\;H_2SiCl_2$ (35 sccm) and $5 \%\;C_2H_2$ in $H_2$(180 sccm) as the Si and C precursors, and $1\%\;NH_3$ in $H_2$(20-100 sccm) as the dopant source gas. The resistivity of SiC films decreased from $1.466{\Omega}{\cdot}cm$ with $NH_3$ of 20 sccm to $0.0358{\Omega}{\cdot}cm$ with 100 sccm. The surface roughness and crystalline structure of $\beta$-SiC did not depend upon the dopant concentration. The average surface roughness for each sample 19-21 nm and the average surface grain size is 165 nm. The peaks of SiC(111), SiC(220), SiC(311) and SiC(222) appeared in polycrystalline $\beta$-SiC films deposited on $Si/SiO_2$ substrate in XRD(X-ray diffraction) analysis. Resistance of nitrogen-doped SiC films decreased with increasing temperature. The variation of resistance ratio is much bigger in low doping, but the linearity of temperature dependent resistance variation is better in high doping. In case of SiC films deposited with 20 sccm and 100 sccm of $1\%\;NH_3$, the average of TCR(temperature coefficient of resistance) is -3456.1 ppm/$^{\circ}C$ and -1171.5 ppm/$^{\circ}C$, respectively.

고온 단결정 3C-SiC 압저항 압력센서 특성 (Characteristics of high-temperature single-crystalline 3C-SiC piezoresistive pressure sensors)

  • 판 투이 탁;정귀상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.274-274
    • /
    • 2008
  • This paper describes on the fabrication and characteristics of a 3C-SiC (Silicon Carbide) micro pressure sensor for harsh environment applications. The implemented micro pressure sensor used 3C-SiC thin-films heteroepitaxially grown on SOI (Si-on-insulator) structures. This sensor takes advantages of the good mechanical properties of Si as diaphragms fabricated by D-RIE technology and temperature properties of 3C-SiC piezoresistors. The fabricated pressure sensors were tasted at temperature up to $250^{\circ}C$ and indicated a sensitivity of 0.46 mV/V*bar at room temperature and 0.28 mV/V*bar at $250^{\circ}C$. The fabricated 3C-SiC/SOI pressure sensor presents a high-sensitivity and excellent temperature stability.

  • PDF

LPCVD에 의한 다결정 3C-SiC 결정성장에 관한 연구 (Study for polycrystalline 3C-SiC thin films growth by LPCVD)

  • 김강산;정귀상
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 C
    • /
    • pp.1313-1314
    • /
    • 2006
  • The polycrystalline 3C-SiC thin films heteroepitaxially grown by LPCVD method using single precursor 1,3-disilabutane at $850^{\circ}C$. The crystallinity of the 3C-SiC thin film was analyzed by XRD and FT-IR. Residual strain was investigated by Raman scattering. The surface morphology was also observed by AFM and voids or dislocations between SiC and $SiO_2$ were measured by SEM. The grown poly 3C-SiC thin film is very good crystalline quality, surface like mirror, and low defect and strain. Therefore, the polycrystalline 3C-SiC is suitable for harsh environment MEMS applications.

  • PDF

고온 가스센서용 Pd-다결정 3C-SiC 쇼트키 다이오드의 특성 (Characteristics of Pd/polycrystalline 3C-SiC Schottky diodes for high temperature gas sensors)

  • 안정학;정귀상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.275-275
    • /
    • 2008
  • This paper describe the fabrication of a Pd/polycrystalline 3C-SiC schottky diode and its characteristics, in which the polycrystalline 3C-SiC layer and Pd Schottky contact were deposited by using APCVD and sputter, respectively. Crystalline quality, uniformity, and preferred orientations of the Pd thin film were evaluated by SEM and XRD, respectively. Pd/poly 3C-SiC Schottky diodes were fabricated and characterized by I-V and C-V measurements. Its electric current density Js and barrier height voltage were measured as $2\times10^{-3}$ A/$cm^2$ and 0.58 eV, respectively. These devices were operated until about $400^{\circ}C$. Therefore, from these results, Pd/poly 3C-SiC Schottky devices have very high potential for high temperature chemical sensor applications.

  • PDF

다결정 3C-SiC 박막의 라만 특성 (Raman Characteristics of Polycrystalline 3C-SiC Thin Films)

  • 정준호;정귀상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.357-358
    • /
    • 2007
  • Raman spectra of poly (polycrystalline) 3C-SiC thin films, which were deposited on the oxidized Si substrate by APCVD, have been measured. They were used to study the mechanical characteristics of poly 3C-SiC grown in various temperatures. TO and LO modes of 2.0 m poly 3C-SiC grown at 1180 C occurred at 794.4 and $965.7\;cm^{-1}$. Their FWHMs (full width half maximum) were used to investigate the stress and the disorder of 3C-SiC. The broad FWHM can explain that the crystallinity of 3C-SiC grown at 1180 C becomes poly crystalline instead of the disordered crystal. The ratio of intensity $I_{(LO)}/I_{(TO)}$ 1.0 means that the crystal defect of 3C-SiC/$SiO_2$/Si is small. The biaxial stress of poly 3C-SiC was obtained as 428 MPa. In the interface of 3C-SiC/$SiO_2$, the phonon mode of C-O bonding appeared at $1122.6\;cm^{-1}$. The phonon modes related to D and G bands of C-C bonding were measured at 1355.8 and $1596.8\;cm^{-1}$ respectively.

  • PDF

고온 화학센서용 다결정 3C-SiC 쇼트키 다이오드 제작과 그 특성 (Fabrication and characteristics of polycrystalline 3C-SiCSchottky diodes for high temperature chemical sensors)

  • 정귀상;안정학
    • 센서학회지
    • /
    • 제17권6호
    • /
    • pp.414-417
    • /
    • 2008
  • This paper describes the fabrication of a Pd/poly 3C-SiC Schottky diode and its characteristics, in which the poly 3C-SiC layer and Pd Schottky contact were deposited by using APCVD and sputter, respectively. Crystalline quality, uniformity, and preferred orientations of the Pd thin film were evaluated by SEM and XRD, respectively. Pd/poly 3C-SiC schottky diodes were fabricated and characterized by I-V and C-V measurements. Its electric current density Js and barrier height voltage were measured as $2{\times}10^{-3}A/cm^2$ and 0.58 eV, respectively. These devices were operated until about $400^{\circ}C$. Therefore, from these results, Pd/poly 3C-SiC Schottky devices have very high potential for high temperature chemical sensor applications.

다공성 3C-SiC 기반 저항식 수소센서의 제작과 그 특성 (Fabrication of a Porous 3C-SiC Based Resistivity Hydrogen Sensor and Its Characteristics)

  • 김강산;정귀상
    • 센서학회지
    • /
    • 제20권3호
    • /
    • pp.168-171
    • /
    • 2011
  • Porous 3C-SiC(pSiC) samples with different pore diameters were prepared from poly crystalline N-type 3C-SiC by electrochemical anodization. The pSiC surface was chemically modified by the sputtering of Pd and Pt nano-particles as a hydrogen catalyst. Changes in resistance were monitored with hydrogen concentrations in the range of 110 ppm - 410 ppm. The variations of the electrical resistance in the presence of hydrogen demonstrated that Pd and Pt-deposited pSiC samples have the ability to detect hydrogen at room temperature. Regardless of the catalyst, the 25 nm pore diameter samples showed good response and recovery properties. However, the 60 nm samples showed unstable and slow response. It was found that the pore size affects the catalyst reaction and consequently, results in changes of the sensitivity to hydrogen.

HMDS 단일 전구체를 이용한 다결정 3C-SiC 박막 성장 (Growth of Polycrystalline 3C-SiC Thin Films using HMDS Single Precursor)

  • 정귀상;김강산;한기봉
    • 한국전기전자재료학회논문지
    • /
    • 제20권2호
    • /
    • pp.156-161
    • /
    • 2007
  • This paper describes the characteristics of polycrystalline ${\beta}$ or 3C (cubic)-SiC (silicon carbide) thin films heteroepitaxailly grown on Si wafers with thermal oxide. In this work, the poly 3C-SiC film was deposited by APCVD (atmospheric pressure chemical vapor deposition) method using HMDS (hexamethyildisilane: $Si_{2}(CH_{3}_{6})$ single precursor. The deposition was performed under various conditions to determine the optimized growth conditions. The crystallinity of the 3C-SiC thin film was analyzed by XPS (X-ray photoelectron spectroscopy), XRD (X-ray diffraction) and FT-IR (fourier transform-infrared spectometers), respectively. The surface morphology was also observed by AFM (atomic force microscopy) and voids or dislocations between SiC and $SiO_{2}$ were measured by SEM (scanning electron microscope). Finally, depth profiling was invesigated by GDS (glow discharge spectrometer) for component ratios analysis of Si and C according to the grown 3C-SiC film thickness. From these results, the grown poly 3C-SiC thin film is very good crystalline quality, surface like mirror and low defect. Therfore, the poly 3C-SiC thin film is suitable for extreme environment, Bio and RF MEMS applications in conjunction with Si micromaching.

AlN 완충층을 이용한 다결정 3C-SiC 박막의 결정성장 (Crystal growth of polyctystalline 3C-SiC thin films on AlN buffer layer)

  • 김강산;정귀상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.333-334
    • /
    • 2007
  • This paper describes the characteristics of poly (polycrystalline) 3C-SiC grown on SiOz and AlN substrates, respectively. The crystalline quality of poly 3C-SiC was improved from resulting in decrease of FWHM (full width half maximum) of XRD by increasing the growth temperature. The minimum growth temperature of poly 3C-SiC was $1100^{\circ}C$. The surface chemical composition and the electron mobility of poly 3C-SiC grown on each substrate were investigated by XPS and Hall Effect, respectively. The chemical compositions of surface of poly 3C-SiC films grown on $SiO_2$ and AlN were not different. However, their electron mobilities were $7.65\;cm^2/V.s$ and $14.8\;cm^2/V.s$, respectively. Therefore, since the electron mobility of poly 3C-SiC films grown on AlN buffer layer was two times higher than that of 3C-SiC/$SiO_2$, a AlN film is a suitable material, as buffer layer, for the growth of poly 3C-SiC thin films with excellent properties for M/NEMS applications.

  • PDF