• Title/Summary/Keyword: Critical properties

Search Result 2,286, Processing Time 0.033 seconds

Threat Analysis based Software Security Testing for preventing the Attacks to Incapacitate Security Features of Information Security Systems (보안기능의 무력화 공격을 예방하기 위한 위협분석 기반 소프트웨어 보안 테스팅)

  • Kim, Dongjin;Jeong, Youn-Sik;Yun, Gwangyeul;Yoo, Haeyoung;Cho, Seong-Je;Kim, Giyoun;Lee, Jinyoung;Kim, Hong-Geun;Lee, Taeseung;Lim, Jae-Myung;Won, Dongho
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.22 no.5
    • /
    • pp.1191-1204
    • /
    • 2012
  • As attackers try to paralyze information security systems, many researchers have investigated security testing to analyze vulnerabilities of information security products. Penetration testing, a critical step in the development of any secure product, is the practice of testing a computer systems to find vulnerabilities that an attacker could exploit. Security testing like penetration testing includes gathering information about the target before the test, identifying possible entry points, attempting to break in and reporting back the findings. Therefore, to obtain maximum generality, re-usability and efficiency is very useful for efficient security testing and vulnerability hunting activities. In this paper, we propose a threat analysis based software security testing technique for evaluating that the security functionality of target products provides the properties of self-protection and non-bypassability in order to respond to attacks to incapacitate or bypass the security features of the target products. We conduct a security threat analysis to identify vulnerabilities and establish a testing strategy according to software modules and security features/functions of the target products after threat analysis to improve re-usability and efficiency of software security testing. The proposed technique consists of threat analysis and classification, selection of right strategy for security testing, and security testing. We demonstrate our technique can systematically evaluate the strength of security systems by analyzing case studies and performing security tests.

Effect of Die Attach Film Composition for 1 Step Cure Characteristics and Thermomechanical Properties (다이접착필름의 조성물이 1단계 경화특성과 열기계적 물성에 미치는 영향에 관한 연구)

  • Sung, Choonghyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.261-267
    • /
    • 2020
  • The demand for faster, lighter, and thinner portable electronic devices has brought about a change in semiconductor packaging technology. In response, a stacked chip-scale package(SCSP) is used widely in the assembly industry. One of the key materials for SCSP is a die-attach film (DAF). Excellent flowability is needed for DAF for successful die attachment without voids. For DAF with high flowability, two-step curing is often required to reduce a cure crack, but one-step curing is needed to reduce the processing time. In this study, DAF composition was categorized into three groups: cure (epoxy resins), soft (rubbers), hard (phenoxy resin, silica) component. The effect of the composition on a cure crack was examined when one-step curing was applied. The die-attach void and flowability were also assessed. The cure crack decreased as the amount of hard components decreased. Die-attach voids also decreased as the amount of hard components decreased. Moreover, the decrease in cure component became important when the amount of hard component was small. The flowability was evaluated using high-temperature storage modulus and bleed-out. A decrease in the amount of hard components was critical for the low storage modulus at 100℃. An increase in cure component and a decrease in hard component were important for the high bleed-out at 120℃(BL-120).

Bioactive Lipids and Their Derivatives in Biomedical Applications

  • Park, Jinwon;Choi, Jaehyun;Kim, Dae-Duk;Lee, Seunghee;Lee, Bongjin;Lee, Yunhee;Kim, Sanghee;Kwon, Sungwon;Noh, Minsoo;Lee, Mi-Ock;Le, Quoc-Viet;Oh, Yu-Kyoung
    • Biomolecules & Therapeutics
    • /
    • v.29 no.5
    • /
    • pp.465-482
    • /
    • 2021
  • Lipids, which along with carbohydrates and proteins are among the most important nutrients for the living organism, have a variety of biological functions that can be applied widely in biomedicine. A fatty acid, the most fundamental biological lipid, may be classified by length of its aliphatic chain, and the short-, medium-, and long-chain fatty acids and each have distinct biological activities with therapeutic relevance. For example, short-chain fatty acids have immune regulatory activities and could be useful against autoimmune disease; medium-chain fatty acids generate ketogenic metabolites and may be used to control seizure; and some metabolites oxidized from long-chain fatty acids could be used to treat metabolic disorders. Glycerolipids play important roles in pathological environments, such as those of cancers or metabolic disorders, and thus are regarded as a potential therapeutic target. Phospholipids represent the main building unit of the plasma membrane of cells, and play key roles in cellular signaling. Due to their physical properties, glycerophospholipids are frequently used as pharmaceutical ingredients, in addition to being potential novel drug targets for treating disease. Sphingolipids, which comprise another component of the plasma membrane, have their own distinct biological functions and have been investigated in nanotechnological applications such as drug delivery systems. Saccharolipids, which are derived from bacteria, have endotoxin effects that stimulate the immune system. Chemically modified saccharolipids might be useful for cancer immunotherapy or as vaccine adjuvants. This review will address the important biological function of several key lipids and offer critical insights into their potential therapeutic applications.

Development of Smart Speed Bump Using Non-newtonian Fluid (비뉴턴 유체를 이용한 스마트 과속방지턱 소재 개발)

  • Jung, Injun;Kim, Eunjung;Yu, Woong-Ryeol;Na, Wonjin
    • Composites Research
    • /
    • v.35 no.4
    • /
    • pp.277-282
    • /
    • 2022
  • In this study, a smart material applicable to speed bumps was developed using low-cost starch and waterbased suspensions, and their properties were investigated. Viscosity and shear stress according to the shear rate was measured by a rheometer to observe shear thickening behavior according to starch concentration. The shear thickening phenomenon and applicability to speed bumps were identified macroscopically via drop weight test and bike driving test, measuring the vibration after impact with a driving speed of 5-25 km/h. As a result of the viscosity measurement, shear thickening occurred after the shear thinning region at the beginning, and the critical strain causing the shear thickening phenomenon decreased as the concentration of starch increased. Also, the viscosity and shear stress increased significantly with the increase of the starch concentration. As a result of the drop weight test and the bike driving test, the suspension was changed to a solid-like state in a short time, and the impact energy was absorbed in the fluid. The shear thickening phenomenon easily occurred as the concentration of the fluid and the applied impact (velocity) increased. Therefore, it can be proposed the development of a smart speed bump material that operates in the range of 5-25 km/h with a Non-Newtonian fluid based on water and starch.

Delamination Prediction of Semiconductor Packages through Finite Element Analysis Reflecting Moisture Absorption and Desorption according to the Temperature and Relative Humidity (유한요소 해석을 통해 온도와 상대습도에 따른 수분 흡습 및 탈습을 반영한 반도체 패키지 구조의 박리 예측)

  • Um, Hui-Jin;Hwang, Yeon-Taek;Kim, Hak-sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.3
    • /
    • pp.37-42
    • /
    • 2022
  • Recently, the semiconductor package structures are becoming thinner and more complex. As the thickness decrease, interfacial delamination due to material mismatch can be further maximized, so the reliability of interface is a critical issue in industry field. Especially, the polymers, which are widely used in semiconductor packaging, are significantly affected by the temperature and moisture. Therefore, in this study, the delamination prediction at the interface of package structure was performed through finite element analysis considering the moisture absorption and desorption under the various temperature conditions. The material properties such as diffusivity and saturated moisture content were obtained from moisture absorption test. The hygro-swelling coefficients of each material were analyzed through TMA and TGA after the moisture absorption. The micro-shear test was conducted to evaluate the adhesion strength of each interface at various temperatures considering the moisture effect. The finite element analysis of interfacial delamination was performed that considers both deformation due to temperature and moisture absorption. Consequently, the interfacial delamination was successfully predicted in consideration of the in-situ moisture desorption and temperature behavior during the reflow process.

Signifying Practices of Technoculture in the age of Data Capitalism: Cultural and Political Alternative after the Financial Crisis of 2008 (데이터자본주의 시대 테크노컬처의 의미화 실천: 2008년 글로벌 금융위기 이후의 문화정치적 대안)

  • Lim, Shan
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.3
    • /
    • pp.143-148
    • /
    • 2022
  • The subject of this paper is the practical examples of technoculture that critically thinks network technology, a strong material foundation in the era of data capitalism in the 21st century, and appropriates its socio-cultural metaphor as an artistic potential. In order to analyze its alternatives and the meaning of cultural politics, this paper examines the properties and influence of data capitalism after the 2008 global financial crisis, and the cultural and artistic context formed by its reaction. The first case considered in this paper, Furtherfield's workshop, provided a useful example of how citizens can participate in social change through learning and education in which art and technology are interrelated. The second case, Greek hackerspace HSGR, developed network technology as a tool to overcome the crisis by proposing a new progressive cultural commons due to Greece's financial crisis caused by the global financial crisis and a decrease in the state's creative support. The third case, Paolo Cirio's project, promoted a critical citizenship towards the state and community systems as dominant types of social governance. These technoculture cases can be evaluated as efforts to combine and rediscover progressive political ideology and its artistic realization tradition in the context of cultural politics, paying attention to the possibility of signifying practices of network technology that dominates the contemporary economic system.

Numerical Simulation of Ocean - Ice Shelf Interaction: Water Mass Circulation in the Terra Nova Bay, Antarctica (해양-빙붕 상호작용을 고려한 남극 테라노바 만에서 수괴 형성과 순환의 수치 시뮬레이션)

  • Taekyun, Kim;Emilia Kyung, Jin;Ji Sung, Na;Choon Ki, Lee;Won Sang, Lee;Jae-Hong, Moon
    • Ocean and Polar Research
    • /
    • v.44 no.4
    • /
    • pp.269-285
    • /
    • 2022
  • The interaction between ocean and ice shelf is a critical physical process in relation to water mass transformations and ice shelf melting/freezing at the ocean-ice interface. However, it remains challenging to thoroughly understand the process due to a lack of observational data with respect to ice shelf cavities. This is the first study to simulate the variability and circulation of water mass both overlying the continental shelf and underneath an ice shelf and an ice tongue in the Terra Nova Bay (TNB), East Antarctica. To explore the properties of water mass and circulation patterns in the TNB and the corresponding effects on sub ice shelf basal melting, we explicitly incorporate the dynamic-thermodynamic processes acting on the ice shelf in the Regional Ocean Modeling System. The simulated water mass formation and circulation in the TNB region agree well with previous studies. The model results show that the TNB circulation is dominated by the geostrophic currents driven by lateral density gradients induced by the releasing of brine or freshwater at the polynya of the TNB. Meanwhile, the circulation dynamics in the cavity under the Nansen Ice shelf (NIS) are different from those in the TNB. The gravity-driven bottom current induced by High Salinity Shelf Water (HSSW) formed at the TNB polynya flows towards the grounding line, and the buoyance-driven flow associated with glacial meltwater generated by the HSSW emerges from the cavity along the ice base. Both current systems compose the thermohaline overturning circulation in the NIS cavity. This study estimates the NIS basal melting rate to be 0.98 m/a, which is comparable to the previously observed melt rate. However, the melting rate shows a significant variation in space and time.

Plant-derived Anti-HIV Natural Products: A Review of Recent Research (천연물의 항 HIV 효능에 대한 최신 연구동향)

  • Karadeniz, Fatih;Oh, Jung Hwan
    • Journal of Life Science
    • /
    • v.32 no.9
    • /
    • pp.734-741
    • /
    • 2022
  • Currently, around 40 million people worldwide are living with human immunodeficiency virus (HIV) infection making HIV a critical global health risk. Present therapies for HIV infection consist of drug cocktails that target different steps of the HIV life cycle to prevent infection, replication, and release of the virus. Due to its mutating nature, drug resistance coupled with side-effects of long-term drug use, novel strategies, and pharmaceuticals to treat and manage HIV infection are constant needs and continuously being studied. Plants allocate a major repertoire of chemical diversity and are therefore regarded as an important source of new bioactive agents that can be utilized against HIV. Since the early 1990s, upon recommendations of the World Health Organization, numerous studies reported phytochemicals from different structural classes such as flavonoids, coumarins, tannins and terpenes with strong inhibitory effects against HIV infection. The present review gathered and presented recent research (2021-present) on plant extracts and phytochemicals that exhibit anti-HIV properties with the aim of providing insights into future studies where ethnomedical and underutilized plant sources may yield important natural products against HIV. Considering the relation and importance of HIV treatment with current viral infection risks such as SARS-CoV-2, screening plants for anti-HIV agents is an important step towards the discovery of novel antivirals.

Effect of Stress Level on Strength Parameters of Cemented Sand (응력조건에 따른 고결모래의 강도정수 평가)

  • Lee, Moon-Joo;Choi, Sung-Kun;Choo, Hyun-Wook;Cho, Yong-Soon;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.5
    • /
    • pp.143-151
    • /
    • 2007
  • The factors affecting the geotechnical properties of cemented sands are known to be relative density, cementation level, stress level, and particle characteristics such as particle size, shape and surface conditions. It has been widely accepted that the friction angle of cemented sands is not affected by cementation while the cohesion of cemented sands was significantly influenced by cementation. The cementation that is a critical component of the strength of cemented sands will be broken with increasing confining pressure and great caution is required in evaluating the cohesion of cemented specimens due to their fragilities. In this study, a series of drained shear tests were performed with specimens at various cementation levels and confining stresses to evaluate the strength parameters of cemented sands. From the experiments, it was concluded that the cohesion intercept of cemented sand experiences three distinctive zone(cementation control zone, transition zone, and stress control zone), as the cementation level and the confining stress varies. In addition, for accurate evaluation of the strength parameters, the level of confining stress triggering the breakage of cementation bond should be determined. In this study, the relationship between the maximum confining stresses capable of maintaining the cementation bond intact and unconfined compression strength of the cemented sand was established.

Drape Simulation Estimation for Non-Linear Stiffness Model (비선형 강성 모델을 위한 드레이프 시뮬레이션 결과 추정)

  • Eungjune Shim;Eunjung Ju;Myung Geol Choi
    • Journal of the Korea Computer Graphics Society
    • /
    • v.29 no.3
    • /
    • pp.117-125
    • /
    • 2023
  • In the development of clothing design through virtual simulation, it is essential to minimize the differences between the virtual and the real world as much as possible. The most critical task to enhance the similarity between virtual and real garments is to find simulation parameters that can closely emulate the physical properties of the actual fabric in use. The simulation parameter optimization process requires manual tuning by experts, demanding high expertise and a significant amount of time. Especially, considerable time is consumed in repeatedly running simulations to check the results of applying the tuned simulation parameters. Recently, to tackle this issue, artificial neural network learning models have been proposed that swiftly estimate the results of drape test simulations, which are predominantly used for parameter tuning. In these earlier studies, relatively simple linear stiffness models were used, and instead of estimating the entirety of the drape mesh, they estimated only a portion of the mesh and interpolated the rest. However, there is still a scarcity of research on non-linear stiffness models, which are commonly used in actual garment design. In this paper, we propose a learning model for estimating the results of drape simulations for non-linear stiffness models. Our learning model estimates the full high-resolution mesh model of drape. To validate the performance of the proposed method, experiments were conducted using three different drape test methods, demonstrating high accuracy in estimation.