Browse > Article
http://dx.doi.org/10.4217/OPR.2022027

Numerical Simulation of Ocean - Ice Shelf Interaction: Water Mass Circulation in the Terra Nova Bay, Antarctica  

Taekyun, Kim (Department of Earth and Marine Science, College of Ocean Sciences, Jeju National University)
Emilia Kyung, Jin (Division of Glacial Environment Research, Korea Polar Research Institute)
Ji Sung, Na (Division of Glacial Environment Research, Korea Polar Research Institute)
Choon Ki, Lee (Division of Glacial Environment Research, Korea Polar Research Institute)
Won Sang, Lee (Division of Glacial Environment Research, Korea Polar Research Institute)
Jae-Hong, Moon (Department of Earth and Marine Science, College of Ocean Sciences, Jeju National University)
Publication Information
Ocean and Polar Research / v.44, no.4, 2022 , pp. 269-285 More about this Journal
Abstract
The interaction between ocean and ice shelf is a critical physical process in relation to water mass transformations and ice shelf melting/freezing at the ocean-ice interface. However, it remains challenging to thoroughly understand the process due to a lack of observational data with respect to ice shelf cavities. This is the first study to simulate the variability and circulation of water mass both overlying the continental shelf and underneath an ice shelf and an ice tongue in the Terra Nova Bay (TNB), East Antarctica. To explore the properties of water mass and circulation patterns in the TNB and the corresponding effects on sub ice shelf basal melting, we explicitly incorporate the dynamic-thermodynamic processes acting on the ice shelf in the Regional Ocean Modeling System. The simulated water mass formation and circulation in the TNB region agree well with previous studies. The model results show that the TNB circulation is dominated by the geostrophic currents driven by lateral density gradients induced by the releasing of brine or freshwater at the polynya of the TNB. Meanwhile, the circulation dynamics in the cavity under the Nansen Ice shelf (NIS) are different from those in the TNB. The gravity-driven bottom current induced by High Salinity Shelf Water (HSSW) formed at the TNB polynya flows towards the grounding line, and the buoyance-driven flow associated with glacial meltwater generated by the HSSW emerges from the cavity along the ice base. Both current systems compose the thermohaline overturning circulation in the NIS cavity. This study estimates the NIS basal melting rate to be 0.98 m/a, which is comparable to the previously observed melt rate. However, the melting rate shows a significant variation in space and time.
Keywords
ocean-ice shelf interaction; cavity circulation; basal melt rate; numerical simulation; antarctica;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Langhorne PJ, Hughes KG, Gough AJ, Smith IJ, Williams MJM, Robinson NJ, Stevens CL, Rack W, Price D, Leonard GH et al. (2015) Observed platelet ice distributions in Antarctic sea ice: an index for ocean-ice shelf heat flux. Geophys Res Lett 42:442-5451. doi:10.1002/2015GL064508   DOI
2 Large WG, McWilliams JC, Doney SC (1994) Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization. Rev Geophys 32:363-403   DOI
3 Lee WS, Hong JG, Jin YG, Kim JH, Park YC, Lee JH, Kim JH, Kim TW, Hwang CY, Lee CK et al. (2019) Final report "Investigating cryospheric evolution of the Victoria Land, Antarctica". Korea Polar Research Institute, Korea BSPM18020-044-7, 687 p
4 Leonard GH, Purdie CR, Langhorne PJ, Haskell TG, Williams MJM, Frew RD (2006) Observations of platelet ice growth and oceanographic conditions during the winter of 2003 in McMurdo Sound, Antarctica. J Geophys Res 111:C04012. doi:10.1029/2005JC002952   DOI
5 MacAyeal DR (1984) Numerical simulations of the Ross Seatides. J Geophys Res 89(C1):607-615. doi:10.1029/JC089iC01p00607   DOI
6 Malyarenko A, Robinson NJ, Williams MJM, Langhorne PJ (2019) A wedge mechanism for summer surface water inflow into the Ross Ice Shelf cavity. J Geophys Res Oceans 124:1196-1214   DOI
7 McMillan M, Shepherd A, Sundal A, Briggs K, Muir A, Ridout A, Hogg A, Wingham D (2014) Increased ice losses from Antarctica detected by CryoSat-2. Geophys Res Lett 41:3899-3905. doi:10.1002/2014GL060111   DOI
8 Mellor GL, Kantha L (1989) An ice-ocean coupled model. J Geophys Res 94:10937-10954   DOI
9 Morgan VI, Jacka TH, Akerman GJ, Clarke AL (1982) Outlet glacier and mass-budget studies in Enderby, Kemp, and Mac. Robertson Lands, Antarctica. Ann Glaciol 3:204-210   DOI
10 Morlighem M, Rignot E, Binder T, Blankenship D, Drews R, Eagles G, Eisen O, Ferraccioli F, Forsberg R, Fretwell P et al. (2020) Deep glacial troughs and stabilizing ridges unveiled beneath the margins of the Antarctic ice sheet. Nature Geoscience 13:132-137. doi:10.1038/s41561-019-0510-8   DOI
11 Orsi AH, Wiederwohl CL (2009) A recount of Ross Sea waters. Deep-Sea Res Pt II 56:778-795. doi:10.1016/j.dsr2.2008.10.033   DOI
12 Paolo FS, Fricker HA, Padman L (2015) Volume loss from Antarctic ice shelves is accelerating Science 348:327-331. doi:10.1126/science.aaa0940   DOI
13 Pritchard HD, Ligtenberg SRM, Fricker HA, Vaughan DG, van den Broeke MR, Padman L (2012) Antarctic icesheet loss driven by basal melting of ice shelves. Nature 484:502-505. doi:10.1038/nature10968   DOI
14 Rignot E, Mouginot J, Scheuchl B, van den Broeke M, van Wessem MJ, Morlighem M (2019) Four decades of Antarctic Ice Sheet mass balance from 1979-2017. Proc Natl Acad Sci USA 116(4) 1095-1103. doi:10.1073/pnas.1812883116   DOI
15 Storto A, Masina S, Simoncelli S, Iovino D, Cipollone A, Drevillon M, Drillet Y, von Schuckman K, Parent L, Garric G, Greiner E, Desportes C, Zuo H, Balmaseda MA, Peterson KA (2019). The added value of the multisystem spread information for ocean heat content and steric sea level investigations in the CMEMS GREP ensemble reanalysis product. Clim Dyn 53:287-312. doi:10.1007/s00382-018-4585-5   DOI
16 Souchez R, Meneghel M, Tison J-L, Lorrain R, Ronveaux D, Baroni C, Lozej A, Tabacco I, Jouzel J (1991) Ice composition evidence of marine ice transfer along the bottom of a small Antarctic Ice Shelf. Geophys Res Lett 18(5):849-852. doi:10.1029/91GL01077   DOI
17 Stevens C, Hulbe C, Brewer M, Stewart C, Robinson N, Ohneiser C, Jendersie S (2020) Ocean mixing and heat transport processes observed under the ross ice shelf control its basal melting. Proc Natl Acad Sci USA 117:16799-16804. doi:10.1073/pnas.1910760117   DOI
18 Stevens C, Lee WS, Fusco G, Yun S, Grant B, Robinson N, Hwang CY (2017) The influence of the Drygalski Ice Tongue on the local ocean. Ann Glaciol 58:51-59. doi:10.1017/aog.2017.4   DOI
19 Van Woert ML, Meier WN, Zou CZ, Archer A, Pellegrini A, Grigioni P, Bertola C (2001) Satellite observations of upper-ocean currents in Terra Nova Bay, Antarctica. Ann Glaciol 33:407-412   DOI
20 Walker RT, Dupont TK, Parizek BR, Alley RB (2008) Effects of basal-melting distribution on the retreat of ice-shelf grounding lines. Geophys Res Lett 35:L17503
21 Wray PA (2019) Spatial analysis of the Nansen ice shelf basal channel, using ice penetrating radar. Master's Thesis, University of Waterloo, Waterloo, 111 p
22 Rusciano E, Budillon G, Fusco G, Spezie G (2013) Evidence of atmosphere-sea ice-ocean coupling in the Terra Nova Bay polynya (Ross Sea-Antarctica). Cont Shelf Res 61-62:112-124. doi:10.1016/j.csr.2013.04.002   DOI
23 Yoon S, Lee W, Stevens C, Jendersie S, Nam S, Yun S, Hwang C, Jang G, Lee J (2020) Variability in highsalinity shelf water production in the Terra Nova Bay polynya, Antarctica. Ocean Sci 16:373-388   DOI
24 Rignot E, Velicogna I, van den Broeke MR, Monaghan A, Lenaerts JTM (2011) Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys Res Lett 38:L05503. doi:10.1029/2011GL046583   DOI
25 Robinson RS, Brzezinski MA, Beucher CP, Horn MGS, Bedsole P (2014) The changing roles of iron and vertical mixing in regulating nitrogen and silicon cycling in the Southern Ocean over the last glacial cycle. Paleoceanograhpy 29:1179-1195. doi:10.1002/2014PA002686   DOI
26 Scambos TA, Bohlander JA, Shuman CU, Skvarca P (2004) Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica. Geophys Res Lett 31(18):L18402. doi:10.1029/2004GL020670   DOI
27 Schaffer J, Timmermann R, Arndt JE, Kristensen SS, Mayer C, Morlighem M, Steinhage D (2016) A global, highresolution data set of ice sheet topography, cavity geometry, and ocean bathymetry. Earth Syst Sci Data 8:543-557. doi:10.5194/essd-8-543-2016   DOI
28 Shchepetkin A, McWilliams JC (1998) The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Model 9:347-404   DOI
29 Silvano A, Foppert A, Rintoul SR, Haumann A, Kimura N, Macdonald A (2020) Recent recovery of Antarctic Bottom Water formation in the Ross Sea driven by climate anomalies. Nat Geosci 13:780-786. doi:10.1038/s41561-020-00655-3   DOI
30 Song YT, Wright D (1998) A general pressure gradient formation for ocean models. part II: energy, momentum, and bottom torque consistency. Mon Weather Rev 126(12):3231-3247   DOI
31 Adusumilli S, Fricker HA, Medley B, Padman L, Siegfried MR (2020) Interannual variations in meltwater input to the Southern Ocean from Antarctic ice shelves. Nat Geosci 13(9):616-620. doi:10.1038/s41561-020-0616-z   DOI
32 Arakawa A, Lamb VR (1977) Computational design of the basic numerical processes of the UCLA general circulation model. In: Chang J (ed) Methods in computation physics, Academic Press, New York, pp 174-267
33 Budgell WP (2005) Numerical simulation of ice-ocean variability in the Barents Sea region: towards dynamical downscaling. Ocean Dyn 55:370-387. doi:10.1007/s10236-005-0008-3   DOI
34 Budillon G, Spezie G (2000) Thermohaline structure and variability in the Terra Nova Bay Polynya, Ross Sea. Antarct Sci 12(4):493-508   DOI
35 Cappelletti A, Picco P, Peluso T (2010) Upper ocean layer dynamics and response to atmospheric forcing in the Terra Nova Bay polynya, Antarctica. Antarct Sci 22(3):319-329   DOI
36 Davis PED, Nicholls KW (2019) Turbulence observations beneath larsen C ice shelf, Antarctica. J Geophys Res-Oceans 124(8):5529-5550. doi:10.1029/2019jc015164   DOI
37 Dinniman MS, Asay-Davis XS, Galton-Fenzi BK, Holland PR, Jenkins A, Timmermann R (2016) Modeling ice shelf/ocean interaction in Antarctica: a review. Oceanography 29(4):144-153   DOI
38 Dinniman MS, Klinck JM, Smith Jr WO (2003) Cross shelf exchange in a model of the Ross Sea circulation and iogeochemistry. Deep-Sea Res Pt II 50:3103-3120. doi:10.1016/j.dsr2.2003.07.011   DOI
39 Fretwell P, Pritchard HD, Vaughan DG, Bamber JL, Barrand NE, Bell R, Bianchi C, Bingham RG, Blankenship DD, Casassa G et al. (2013) Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. Cryosphere 7:375-393. doi:10.5194/tc-7-375-2013   DOI
40 Fairall CW, Bradley EF, Hare JE, Grachev AA, Edson JB (2003) Bulk parameterization of air-sea fluxes: updates and verification for the COARE algorithm. J Climate 16:571-591   DOI
41 Fusco G, Budillon G, Spezie G (2009) Surface heat fluxes and thermohaline variability in the Ross Sea and in Terra Nova Bay polynya. Cont Shelf Res 29:1887-1895. doi:10.1016/j.csr.2009.07.006   DOI
42 Gudmundsson GH, Paolo FS, Adusumilli S, Fricker HA (2019) Instantaneous Antarctic ice sheet mass loss driven by thinning ice shelves. Geophys Res Lett 46(23):13903-13909. doi:10.1029/2019GL085027   DOI
43 Guo G, Gao L, Shi J (2020) Modulation of dense shelf water salinity variability in the western Ross Sea associated with the Amundsen Sea Low. Environ Res Lett 16:014004
44 Hakkinen S, Mellor GL (1992) Modelling the seasonal variability of a coupled arctic ice-ocean system. J Geophys Res 97:20285-20304   DOI
45 Hanna E, Navarro FJ, Pattyn F, Domingues CM, Fettweis X, Ivins ER, Nicholls RJ, Ritz C, Smith B, Tulaczyk S, Whitehouse PL, Zwally HJ (2013) Ice-sheet mass balance and climate change. Nature 498:51-59   DOI
46 Hedstrom K (2018) Technical manual for a coupled Sea-Ice/Ocean circulation model (Version5). U.S. Dept. of the Interior, Bureau of Ocean Energy Management, Alaska OCS Region. OCS Study BOEM 2018-007, 182 p
47 Hellmer HH, Olbers D (1989) A two- dimensional model for the thermohaline circulation under an ice shelf. Antarct Sci 1:325-336. doi:10.1017/S0954102089000490   DOI
48 Hunke E (2001) Viscous-plastic sea ice dynamics with the EVP model: linearization issues. J Comput Phys 170:18-38   DOI
49 Hersbach H, Bell B, Berrisford P, Hirahara S, Horanyi A, Munoz-Sabater J, Nicolas J, Peubey C, Radu R, Schepers D et al. (2020) The ERA5 global reanalysis. Q J R Meteorol Soc 146(730):1999-2049. doi:10.1002/qj.3803   DOI
50 Holland DM, Jenkins A (1999) Modeling thermodynamic iceocean interactions at the base of an ice shelf. J Phys Oceanogr 29:1787-1800. doi:10.1175/1520-0485(1999)029<1787:MTIOIA>2.0.CO;2   DOI
51 Hunke E, Dukowicz J (1997) An elastic-viscous-plastic model for sea ice dynamics. J Phys Oceanogr 27:1849-1867   DOI
52 20.Jacobs SS, Fairbanks RG, Horibe Y (1985) Origin and evolution of water masses near the Antarctic continental margin: evidence from H218O/H216O ratios in seawater. Antarct Res Ser 43:59-85   DOI
53 Jacobs SS, Hellmer H, Doake C, Frolich R (1992) Melting of ice shelves and the mass balance of Antarctica. J Glaciol 38:375-387   DOI
54 Jendersie S, Williams MJM, Langhorne PJ, Robertson R (2018) The density-driven winter intensification of the Ross Sea circulation. J Geophys Res-Oceans 123:1-23. doi:10.1029/2018JC013965   DOI
55 Jenkins A (1991) A one dimensional model of ice-shelf ocean interaction. J Geophys Res 96:20671-20677   DOI
56 Lai C-Y, Kingslake J, Wearing MG, Chen P-HC, Gentine P, Li H, Spergel JJ, van Wessem JM (2020) Vulnerability of Antarctica's ice shelves to meltwater-driven fracture. Nature 584(7822):574-578. doi:10.1038/s41586-020-2627-8   DOI