Browse > Article
http://dx.doi.org/10.4062/biomolther.2021.107

Bioactive Lipids and Their Derivatives in Biomedical Applications  

Park, Jinwon (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University)
Choi, Jaehyun (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University)
Kim, Dae-Duk (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University)
Lee, Seunghee (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University)
Lee, Bongjin (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University)
Lee, Yunhee (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University)
Kim, Sanghee (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University)
Kwon, Sungwon (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University)
Noh, Minsoo (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University)
Lee, Mi-Ock (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University)
Le, Quoc-Viet (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University)
Oh, Yu-Kyoung (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University)
Publication Information
Biomolecules & Therapeutics / v.29, no.5, 2021 , pp. 465-482 More about this Journal
Abstract
Lipids, which along with carbohydrates and proteins are among the most important nutrients for the living organism, have a variety of biological functions that can be applied widely in biomedicine. A fatty acid, the most fundamental biological lipid, may be classified by length of its aliphatic chain, and the short-, medium-, and long-chain fatty acids and each have distinct biological activities with therapeutic relevance. For example, short-chain fatty acids have immune regulatory activities and could be useful against autoimmune disease; medium-chain fatty acids generate ketogenic metabolites and may be used to control seizure; and some metabolites oxidized from long-chain fatty acids could be used to treat metabolic disorders. Glycerolipids play important roles in pathological environments, such as those of cancers or metabolic disorders, and thus are regarded as a potential therapeutic target. Phospholipids represent the main building unit of the plasma membrane of cells, and play key roles in cellular signaling. Due to their physical properties, glycerophospholipids are frequently used as pharmaceutical ingredients, in addition to being potential novel drug targets for treating disease. Sphingolipids, which comprise another component of the plasma membrane, have their own distinct biological functions and have been investigated in nanotechnological applications such as drug delivery systems. Saccharolipids, which are derived from bacteria, have endotoxin effects that stimulate the immune system. Chemically modified saccharolipids might be useful for cancer immunotherapy or as vaccine adjuvants. This review will address the important biological function of several key lipids and offer critical insights into their potential therapeutic applications.
Keywords
Lipids; Fatty acids; Glycerolipids; Phospholipids; Biomedical applications;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Pauls, S. D., Rodway, L. A., Winter, T., Taylor, C. G., Zahradka, P. and Aukema, H. M. (2020) Alpha-linolenic acid enhances the phagocytic and secretory functions of alternatively activated macrophages in part via changes to the oxylipin profile. Int. J. Biochem. Cell Biol. 119, 105662.   DOI
2 Boffa, M. B. and Koschinsky, M. L. (2019) Oxidized phospholipids as a unifying theory for lipoprotein(a) and cardiovascular disease. Nat. Rev. Cardiol. 16, 305-318.   DOI
3 Augustin, K., Khabbush, A., Williams, S., Eaton, S., Orford, M., Cross, J. H., Heales, S. J. R., Walker, M. C. and Williams, R. S. B. (2018a) Mechanisms of action for the medium-chain triglyceride ketogenic diet in neurological and metabolic disorders. Lancet Neurol. 17, 84-93.   DOI
4 Yu, J., Hung, J. T., Wang, S. H., Cheng, J. Y. and Yu, A. L. (2020) Targeting glycosphingolipids for cancer immunotherapy. FEBS Lett. 594, 3602-3618.   DOI
5 Yamashita, S., Hashimoto, M., Haque, A. M., Nakagawa, K., Kinoshita, M., Shido, O. and Miyazawa, T. (2017) Oral administration of ethanolamine glycerophospholipid containing a high level of plasmalogen improves memory impairment in amyloid β-infused rats. Lipids 52, 575-585.   DOI
6 Yang, C. and Merlin, D. (2020) Lipid-based drug delivery nanoplatforms for colorectal cancer therapy. Nanomaterials 10, 1424.   DOI
7 Yang, E., Singh, B. K., Paustian, A. M. S. and Kambayashi, T. (2016) Diacylglycerol kinase ζ is a target to enhance NK cell function. J. Immunol. 197, 934-941.   DOI
8 Zalba, S., Seynhaeve, A. L. B., Brouwers, J. F., Suss, R., Verheij, M. and Ten Hagen, T. L. M. (2020) Sensitization of drug resistant sarcoma tumors by membrane modulation: via short chain sphingolipid-containing nanoparticles. Nanoscale 12, 16967-16979.   DOI
9 Zhai, L., Sun, N., Han, Z., Jin, H. C. and Zhang, B. (2015) Liposomal short-chain C6 ceramide induces potent anti-osteosarcoma activity in vitro and in vivo. Biochem. Biophys. Res. Commun. 468, 274-280.   DOI
10 Zhang, C., Maruggi, G., Shan, H. and Li, J. (2019c) Advances in mRNA vaccines for infectious diseases. Front. Immunol. 10, 594.   DOI
11 Koh, A., De Vadder, F., Kovatcheva-Datchary, P. and Backhed, F. (2016) From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165, 1332-1345.   DOI
12 Kim, J., Ahn, M., Choi, Y., Kang, T., Kim, J., Lee, N. H., Kim, G. O. and Shin, T. (2020) Alpha-linolenic acid alleviates dextran sulfate sodium-induced ulcerative colitis in mice. Inflammation 43, 1876-1883.   DOI
13 Kimura, I., Ichimura, A., Ohue-Kitano, R. and Igarashi, M. (2020) Free fatty acid receptors in health and disease. Physiol. Rev. 100, 171-210.   DOI
14 Klein, M. E., Rieckmann, M., Lucas, H., Meister, A., Loppnow, H. and Mader, K. (2020) Phosphatidylserine (PS) and phosphatidylglycerol (PG) enriched mixed micelles (mm): a new nano-drug delivery system with anti-inflammatory potential? Eur. J. Pharm. Sci. 152, 105451.   DOI
15 Mo, Z., Tang, C., Li, H., Lei, J., Zhu, L., Kou, L., Li, H., Luo, S., Li, C., Chen, W. and Zhang, L. (2020) Eicosapentaenoic acid prevents inflammation induced by acute cerebral infarction through inhibition of NLRP3 inflammasome activation. Life Sci. 242, 117133.   DOI
16 Slotte, J. P. (2013) Biological functions of sphingomyelins. Prog. Lipid Res. 52, 424-437.   DOI
17 Shetab Boushehri, M. A. and Lamprecht, A. (2019) Challenges of using lipopolysaccharides for cancer immunotherapy and potential delivery-based solutions thereto. Ther. Deliv. 10, 165-187.   DOI
18 Shetab Boushehri, M. A., Yazeji, T., Stein, V. and Lamprecht, A. (2019) Modulation of nanostructure-based lipopolysaccharide active immunotherapy in cancer: size and composition determine short- and long-term tolerability. Mol. Pharm. 16, 4507-4518.   DOI
19 Simon, M. V., Basu, S. K., Qaladize, B., Grambergs, R., Rotstein, N. P. and Mandal, N. (2021) Sphingolipids as critical players in retinal physiology and pathology. J. Lipid Res. 62, 100037.   DOI
20 Tanner, G. R., Lutas, A., Martinez-Francois, J. R. and Yellen, G. (2011) Single KATP channel opening in response to action potential firing in mouse dentate granule neurons. J. Neurosci. 31, 8689-8696.   DOI
21 Thomas, M. K., D'Silva, J. A. and Borole, A. J. (2016) Injection lipolysis with a cocktail of phosphatidylcholine and deoxycholate: an indian experience. Plast. Reconstr. Surg. Glob. Open 4, e861.   DOI
22 Szondy, Z., Sarang, Z., Kiss, B., Garabuczi, E. and Koroskenyi, K. (2017) Anti-inflammatory mechanisms triggered by apoptotic cells during their clearance. Front. Immunol. 8, 909.   DOI
23 Sutter, I., Klingenberg, R., Othman, A., Rohrer, L., Landmesser, U., Heg, D., Rodondi, N., Mach, F., Windecker, S., Matter, C. M., Luscher, T. F., von Eckardstein, A. and Hornemann, T. (2016) Decreased phosphatidylcholine plasmalogens - a putative novel lipid signature in patients with stable coronary artery disease and acute myocardial infarction. Atherosclerosis 246, 130-140.   DOI
24 Zhang, F., Stephan, S. B., Ene, C. I., Smith, T. T., Holland, E. C. and Stephan, M. T. (2018) Nanoparticles that reshape the tumor milieu create a therapeutic window for effective T-cell therapy in solid malignancies. Cancer Res. 78, 3718-3730.   DOI
25 Moniri, N. H. and Farah, Q. (2021) Short-chain free-fatty acid G protein-coupled receptors in colon cancer. Biochem. Pharmacol. 186, 114483.   DOI
26 Morin, C. and Fortin, S. (2017) Docosahexaenoic acid monoglyceride increases carboplatin activity in lung cancer models by targeting EGFR. Anticancer Res. 37, 6015-6023.
27 Nagachinta, S., Bouzo, B. L., Vazquez-Rios, A. J., Lopez, R. and de la Fuente, M. (2020) Sphingomyelin-based nanosystems (SNS) for the development of anticancer miRNA therapeutics. Pharmaceutics 12, 189.   DOI
28 Milane, L. and Amiji, M. (2021) Clinical approval of nanotechnologybased SARS-CoV-2 mRNA vaccines: impact on translational nanomedicine. Drug Deliv. Transl. Res. 11, 1309-1315.   DOI
29 Spite, M., Claria, J. and Serhan, C. N. (2014) Resolvins, Specialized proresolving lipid mediators, and their potential roles in metabolic diseases. Cell Metab. 19, 21-36.   DOI
30 Suhrland, C., Truman, J. P., Obeid, L. M. and Sitharaman, B. (2019) Oxidized graphene nanoparticles as a delivery system for the proapoptotic sphingolipid C6 ceramide. J. Biomed. Mater. Res. A 107, 25-37.   DOI
31 So, J., Wu, D., Lichtenstein, A. H., Tai, A. K., Matthan, N. R., Maddipati, K. R. and Lamon-Fava, S. (2021) EPA and DHA differentially modulate monocyte inflammatory response in subjects with chronic inflammation in part via plasma specialized pro-resolving lipid mediators: a randomized, double-blind, crossover study. Atherosclerosis 316, 90-98.   DOI
32 Thomas, M. K., D'Silva, J. A. and Borole, A. J. (2018) Injection lipolysis: a systematic review of literature and our experience with a combination of phosphatidylcholine and deoxycholate over a period of 14 years in 1269 patients of Indian and South East Asian origin. J. Cutan. Aesthet. Surg. 11, 222-228.   DOI
33 Toyoda, T., Kamata, T., Tanaka, K., Ihara, F., Takami, M., Suzuki, H., Nakajima, T., Ikeuchi, T., Kawasaki, Y., Hanaoka, H., Nakayama, T., Yoshino, I. and Motohashi, S. (2020) Phase II study of α-galactosylceramide-pulsed antigen-presenting cells in patients with advanced or recurrent non-small cell lung cancer. J. Immunother. Cancer 8, e000316.   DOI
34 Messias, M. C. F., Mecatti, G. C., Priolli, D. G. and De Oliveira Carvalho, P. (2018) Plasmalogen lipids: functional mechanism and their involvement in gastrointestinal cancer. Lipids Health Dis. 17, 41.   DOI
35 Zhang, S., Lu, X., Wang, B., Zhang, G., Liu, M., Geng, S., Sun, L., An, J., Zhang, Z. and Zhang, H. (2021) A soft anti-virulence liposome realizing the explosive release of antibiotics at an infectious site to improve antimicrobial therapy. J. Mater. Chem. B 9, 147-158.   DOI
36 Valenzuela, P. L., Carrera-Bastos, P., Galvez, B. G., Ruiz-Hurtado, G., Ordovas, J. M., Ruilope, L. M. and Lucia, A. (2021) Lifestyle interventions for the prevention and treatment of hypertension. Nat. Rev. Cardiol. 18, 251-275.   DOI
37 van Hell, A. J., Melo, M. N., van Blitterswijk, W. J., Gueth, D. M., Braumuller, T. M., Pedrosa, L. R. C., Song, J. Y., Marrink, S. J., Koning, G. A., Jonkers, J. and Verheij, M. (2013) Defined lipid analogues induce transient channels to facilitate drug-membrane traversal and circumvent cancer therapy resistance. Sci. Rep. 3, 1949.   DOI
38 Turpin-Nolan, S. M. and Bruning, J. C. (2020) The role of ceramides in metabolic disorders: when size and localization matters. Nat. Rev. Endocrinol. 16, 224-233.   DOI
39 Medina, T. P., Gerle, M., Humbert, J., Chu, H., Kopnick, A. L., Barkmann, R., Garamus, V. M., Sanz, B., Purcz, N., Will, O., Appold, L., Damm, T., Suojanen, J., Arnold, P., Lucius, R., Willumeit-Romer, R., Acil, Y., Wiltfang, J., Goya, G. F., Gluer, C. C. and Medina, O. P. (2020) Lipid-iron nanoparticle with a cell stress release mechanism combined with a local alternating magnetic field enables siteactivated drug release. Cancers (Basel) 12, 3767.   DOI
40 Miao, L., Li, L., Huang, Y., Delcassian, D., Chahal, J., Han, J., Shi, Y., Sadtler, K., Gao, W., Lin, J., Doloff, J. C., Langer, R. and Anderson, D. G. (2019) Delivery of mRNA vaccines with heterocyclic lipids increases anti-tumor efficacy by sting-mediated immune cell activation. Nat. Biotechnol. 37, 1174-1185.   DOI
41 Leuti, A., Fazio, D., Fava, M., Piccoli, A., Oddi, S. and Maccarrone, M. (2020) Bioactive lipids, inflammation and chronic diseases. Adv. Drug Deliv. Rev. 159, 133-169.   DOI
42 van Lummel, M., van Blitterswijk, W. J., Vink, S. R., Veldman, R. J., van der Valk, M. A., Schipper, D., Dicheva, B. M., Eggermont, A. M. M., ten Hagen, T. L. M., Verheij, M. and Koning, G. A. (2011) Enriching lipid nanovesicles with short-chain glucosylceramide improves doxorubicin delivery and efficacy in solid tumors. FASEB J. 25, 280-289.   DOI
43 Ko, C. W., Qu, J., Black, D. D. and Tso, P. (2020) Regulation of intestinal lipid metabolism: current concepts and relevance to disease. Nat. Rev. Gastroenterol. Hepatol. 17, 169-183.   DOI
44 Kurek, K., Lukaszuk, B., Piotrowska, D. M., WiesioBek, P., Chabowska, A. M. and Zendzian-Piotrowska, M. (2013) Metabolism, physiological role, and clinical implications of sphingolipids in gastrointestinal tract. BioMed Res. Int. 2013, 908907.   DOI
45 Lacour, S., Hammann, A., Grazide, S., Lagadic-Gossmann, D., Athias, A., Sergent, O., Laurent, G., Gambert, P., Solary, E. and Dimanche-Boitrel, M. T. (2004) Cisplatin-induced CD95 redistribution into membrane lipid rafts of HT29 human colon cancer cells. Cancer Res. 64, 3593-3598.   DOI
46 Zhou, F., Ciric, B., Zhang, G. X. and Rostami, A. (2014) Immunotherapy using lipopolysaccharide-stimulated bone marrow-derived dendritic cells to treat experimental autoimmune encephalomyelitis. Clin. Exp. Immunol. 178, 447-458.   DOI
47 van Meer, G., Voelker, D. R. and Feigenson, G. W. (2008) Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol. 9, 112-124.   DOI
48 Verbeke, R., Lentacker, I., Breckpot, K., Janssens, J., Van Calenbergh, S., De Smedt, S. C. and Dewitte, H. (2019) Broadening the message: a nanovaccine co-loaded with messenger RNA and α-Galcer induces antitumor immunity through conventional and natural killer T cells. ACS Nano 13, 1655-1669.   DOI
49 Vieira, S. A., Zhang, G. and Decker, E. A. (2017) Biological implications of lipid oxidation products. J. Am. Oil Chem. Soc. 94, 339-351.   DOI
50 Lavelle, A. and Sokol, H. (2020) Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 17, 223-237.   DOI
51 Li, J., Wang, X., Zhang, T., Wang, C., Huang, Z., Luo, X. and Deng, Y. (2015) A review on phospholipids and their main applications in drug delivery systems. Asian J. Pharm. Sci. 10, 81-98.   DOI
52 Li, X., Fujio, M., Imamura, M., Wu, D., Vasan, S., Wong, C. H., Ho, D. D. and Tsuji, M. (2010) Design of a potent CD1d-binding NKT cell ligand as a vaccine adjuvant. Proc. Natl. Acad. Sci. U.S.A. 107, 13010-13015.   DOI
53 Shim, G., Kim, M. G., Park, J. Y. and Oh, Y. K. (2016) Graphene-based nanosheets for delivery of chemotherapeutics and biological drugs. Adv. Drug Deliv. Rev. 105, 205-227.   DOI
54 Watson, H. (2015) Biological membranes. Essays Biochem. 59, 43-70.   DOI
55 Chen, M., Huang, H., Zhou, P., Zhang, J., Dai, Y., Yang, D., Fan, X. and Pan, H. (2019) Oral phosphatidylcholine improves intestinal barrier function in drug-induced liver injury in rats. Gastroenterol. Res. Pract. 2019, 8723460.
56 Chen, M. B., Jiang, Q., Liu, Y. Y., Zhang, Y., He, B. S., Wei, M. X., Lu, J. W., Ji, Y. and Lu, P. H. (2015) C6 ceramide dramatically increases vincristine sensitivity both in vivo and in vitro, involving AMP-activated protein kinase-p53 signaling. Carcinogenesis 36, 1061-1070.   DOI
57 Choi, M. K. and Song, I. S. (2020) Recent advances in the formulation of sphingolipid anticancer therapeutics. J. Pharm. Investig. 50, 295-307.   DOI
58 Wang, S. B., Ma, Y. Y., Chen, X. Y., Zhao, Y. Y. and Mou, X. Z. (2019) Ceramide-graphene oxide nanoparticles enhance cytotoxicity and decrease HCC xenograft development: a novel approach for targeted cancer therapy. Front. Pharmacol. 10, 69.   DOI
59 Warren, E. C., Walker, M. C. and Williams, R. S. B. (2018) All you need is fats-for seizure control: using amoeba to advance epilepsy research. Front. Cell. Neurosci. 12, 199.   DOI
60 Welte, M. A. and Gould, A. P. (2017) Lipid droplet functions beyond energy storage. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1862, 1260-1272.   DOI
61 Wood, P. L., Mankidy, R., Ritchie, S., Heath, D., Wood, J. A., Flax, J. and Goodenowe, D. B. (2010) Circulating plasmalogen levels and Alzheimer disease assessment scale-cognitive scores in Alzheimer patients. J. Psychiatry Neurosci. 35, 59-62.   DOI
62 Zhang, X., Matsuda, M., Yaegashi, N., Nabe, T. and Kitatani, K. (2020) Regulation of necroptosis by phospholipids and sphingolipids. Cells 9, 627.   DOI
63 Dasgupta, S. and Ray, S. W. (2017) Diverse biological functions of sphingolipids in the cns: ceramide and sphingosine regulate myelination in developing brain but stimulate demyelination during pathogenesis of multiple sclerosis. J. Neurol. Psychol. 5, 10.13188/2332-3469.1000035.   DOI
64 Bergsson, G., Steingrimsson, O. and Thormar, H. (2002) Bactericidal effects of fatty acids and monoglycerides on Helicobacter pylori. Int. J. Antimicrob. Agents 20, 258-262.   DOI
65 Dial, E. J., Zayat, M., Lopez-Storey, M., Tran, D. and Lichtenberger, L. (2008) Oral phosphatidylcholine preserves the gastrointestinal mucosal barrier during LPS-induced inflammation. Shock 30, 729-733.   DOI
66 Kostarnoy, A. V., Gancheva, P. G., Logunov, D. Y., Verkhovskaya, L. V., Bobrov, M. A., Scheblyakov, D. V., Tukhvatulin, A. I., Filippova, N. E., Naroditsky, B. S. and Gintsburg, A. L. (2013) Topical bacterial lipopolysaccharide application affects inflammatory response and promotes wound healing. J. Interferon Cytokine Res. 33, 514-522.   DOI
67 Luu, M., Pautz, S., Kohl, V., Singh, R., Romero, R., Lucas, S., Hofmann, J., Raifer, H., Vachharajani, N., Carrascosa, L. C., Lamp, B., Nist, A., Stiewe, T., Shaul, Y., Adhikary, T., Zaiss, M. M., Lauth, M., Steinhoff, U. and Visekruna, A. (2019) The short-chain fatty acid pentanoate suppresses autoimmunity by modulating the metabolic-epigenetic crosstalk in lymphocytes. Nat. Commun. 10, 760.   DOI
68 Currie, E., Schulze, A., Zechner, R., Walther, T. C. and Farese, R. V. (2013) Cellular fatty acid metabolism and cancer. Cell Metab. 18, 153-161.   DOI
69 Cutillo, G., Saariaho, A. H. and Meri, S. (2020) Physiology of gangliosides and the role of antiganglioside antibodies in human diseases. Cell. Mol. Immunol. 17, 313-322.   DOI
70 Czech, M. P. (2003) Dynamics of phosphoinositides in membrane retrieval and insertion. Annu. Rev. Physiol. 65, 791-815.   DOI
71 Desale, S. E. and Chinnathambi, S. (2021) α-Linolenic acid modulates phagocytosis and endosomal pathways of extracellular tau in microglia. Cell Adh. Migr. 15, 84-100.   DOI
72 Dou, X., Gao, N., Yan, D. and Shan, A. (2020) Sodium butyrate alleviates mouse colitis by regulating gut microbiota dysbiosis. Animals 10, 1154.   DOI
73 Maki, K. C. and Dicklin, M. R. (2019) Strategies to improve bioavailability of omega-3 fatty acids from ethyl ester concentrates. Curr. Opin. Clin. Nutr. Metab. Care 22, 116-123.   DOI
74 Zhang, Y., Springfield, R., Chen, S., Li, X., Feng, X., Moshirian, R., Yang, R. and Yuan, W. (2019b) α-GalCer and iNKT cell-based cancer immunotherapy: realizing the therapeutic potentials. Front. Immunol. 10, 1126.   DOI
75 Zhao, R., Jiang, J., Li, H., Chen, M., Liu, R., Sun, S., Ma, D., Liang, X. and Wang, S. (2018) Phosphatidylserine-microbubble targetingactivated microglia/macrophage in inflammation combined with ultrasound for breaking through the blood-brain barrier. J. Neuroinflammation 15, 334.   DOI
76 Lyu, K., Zhang, D., Nozaki, Y., Zhang, Y., Bhanot, S., Cline, G., Samual, V. and Shulman, G. I. (2018) Membrane sn-1,2 diacylglycerol mediates lipid-induced hepatic insulin resistance in vivo. Diabetes 67, 243-LB.
77 Maeda, N., Kokai, Y., Hada, T., Yoshida, H. and Mizushina, Y. (2013) Oral administration of monogalactosyl diacylglycerol from spinach inhibits colon tumor growth in mice. Exp. Ther. Med. 5, 17-22.   DOI
78 Maev, I. V., Samsonov, A. A., Palgova, L. K., Pavlov, C. S., Shirokova, E. N., Vovk, E. I. and Starostin, K. M. (2020) Effectiveness of phosphatidylcholine as adjunctive therapy in improving liver function tests in patients with non-alcoholic fatty liver disease and metabolic comorbidities: real-life observational study from Russia. BMJ Open Gastroenterol. 7, e000368.   DOI
79 McClements, D. J. (2010) Design of nano-laminated coatings to control bioavailability of lipophilic food components. J. Food Sci. 75, 30-42.   DOI
80 Lopez-Toledano, M. A., Saxena, V., Legassie, J. D., Liu, H., Ghanta, A., Riseman, S., Cocilova, C., Daak, A., Thorsteinsson, T., Rabinowicz, A. L. and Sancilio, F. D. (2019) Advanced lipid technologies® (ALT®): a proven formulation platform to enhance the bioavailability of lipophilic compounds. J. Drug Deliv. 2019, 1957360.
81 Sada, N. and Inoue, T. (2018) Electrical control in neurons by the ketogenic diet. Front. Cell. Neurosci. 12, 208.   DOI
82 Kawano, A., Ariyoshi, W., Yoshioka, Y., Hikiji, H., Nishihara, T. and Okinaga, T. (2019) Docosahexaenoic acid enhances M2 macrophage polarization via the p38 signaling pathway and autophagy. J. Cell. Biochem. 120, 12604-12617.   DOI
83 Geng, S., Zhu, W., Xie, C., Li, X., Wu, J., Liang, Z., Xie, W., Zhu, J., Huang, C., Zhu, M., Wu, R. and Zhong, C. (2016) Medium-chain triglyceride ameliorates insulin resistance and inflammation in high fat diet-induced obese mice. Eur. J. Nutr. 55, 931-940.   DOI
84 Goto, S., Sakai, S., Kera, J., Suma, Y., Soma, G. I. and Takeuchi, S. (1996) Intradermal administration of lipopolysaccharide in treatment of human cancer. Cancer Immunol. Immunother. 42, 255-261.   DOI
85 Pauls, S. D., Rodway, L. A., Winter, T., Taylor, C. G., Zahradka, P. and Aukema, H. M. (2018) Anti-inflammatory effects of α-linolenic acid in M1-like macrophages are associated with enhanced production of oxylipins from α-linolenic and linoleic acid. J. Nutr. Biochem. 57, 121-129.   DOI
86 Ramana, K. V., Srivastava, S. and Singhal, S. S. (2013) Lipid peroxidation products in human health and disease. Oxid. Med. Cell. Longev. 2013, 583438.
87 Ramirez, M., Amate, L. and Gil, A. (2001) Absorption and distribution of dietary fatty acids from different sources. Early Hum. Dev. 65 Suppl, S95-S101.   DOI
88 Rockwell, C. E., Morrison, D. C. and Qureshi, N. (2010) Lipid a-mediated tolerance and cancer therapy. Adv. Exp. Med. Biol. 667, 81-99.   DOI
89 Saito, S., Hernandez-Ono, A. and Ginsberg, H. N. (2007) Dietary 1,3-diacylglycerol protects against diet-induced obesity and insulin resistance. Metabolism 56, 1566-1575.   DOI
90 Salti, G., Ghersetich, I., Tantussi, F., Bovani, B., Lotti, T. (2008) Phosphatidylcholine and sodium deoxycholate in the treatment of localized fat: a double-blind, randomized study. Dermatol. Surg. 34, 60-66.   DOI
91 Schink, K. O., Tan, K. W. and Stenmark, H. (2016) Phosphoinositides in control of membrane dynamics. Annu. Rev. Cell Dev. Biol. 32, 143-171.   DOI
92 Huang, H. J., Zhang, A. Y., Cao, H. C., Lu, H. F., Wang, B. H., Xie, Q., Xu, W. and Li, L. J. (2013) Metabolomic analyses of faeces reveals malabsorption in cirrhotic patients. Dig. Liver Dis. 45, 677-682.   DOI
93 Draznin, B. (2006) Molecular mechanisms of insulin resistance: serine phosphorylation of insulin receptor substrate-1 and increased expression of p85 α: the two sides of a coin. Diabetes 55, 2392-2397.   DOI
94 Han, S., Wang, C., Qin, X., Xia, J. and Wu, A. (2017) LPS alters the immuno-phenotype of glioma and glioma stem-like cells and induces in vivo antitumor immunity via TLR4. J. Exp. Clin. Cancer Res. 36, 83.   DOI
95 Hannun, Y. A. and Obeid, L. M. (2018) Sphingolipids and their metabolism in physiology and disease. Nat. Rev. Mol. Cell Biol. 19, 175-191.   DOI
96 Hannun, Y. A. and Obeid, L. M. (2008) Principles of bioactive lipid signalling: lessons from sphingolipids. Nat. Rev. Mol. Cell Biol. 9, 139-150.   DOI
97 Harayama, T. and Riezman, H. (2018) Understanding the diversity of membrane lipid composition. Nat. Rev. Mol. Cell Biol. 19, 281-296.   DOI
98 Husted, A. S., Trauelsen, M., Rudenko, O., Hjorth, S. A. and Schwartz, T. W. (2017) GPCR-mediated signaling of metabolites. Cell Metab. 25, 777-796.   DOI
99 Henderson, S. T., Vogel, J. L., Barr, L. J., Garvin, F., Jones, J. J. and Costantini, L. C. (2009) Study of the ketogenic agent AC-1202 in mild to moderate Alzheimer's disease: a randomized, double-blind, placebo-controlled, multicenter trial. Nutr. Metab. 6, 31.   DOI
100 Serhan, C. N. and Chiang, N. (2013) Resolution phase lipid mediators of inflammation: agonists of resolution. Curr. Opin. Pharmacol. 13, 632-640.   DOI
101 Serhan, C. N., Chiang, N. and Van Dyke, T. E. (2008) Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat. Rev. Immunol. 8, 349-361.   DOI
102 McGarry, J. D. and Foster, D. W. (1980) Regulation of hepatic fatty acid oxidation and ketone body production. Annu. Rev. Biochem. 49, 395-420.   DOI
103 Feng, H., Nakajima, N., Wu, L., Yamashita, M., Lopes, T. J. S., Tsuji, M., Hasegawa, H., Watanabe, T. and Kawaoka, Y. (2019) A glycolipid adjuvant, 7DW8-5, enhances the protective immune response to the current split influenza vaccine in mice. Front. Microbiol. 10, 2157.   DOI
104 Brinkmann, V., Billich, A., Baumruker, T., Heining, P., Schmouder, R., Francis, G., Aradhye, S. and Burtin, P. (2010) Fingolimod (FTY720): discovery anddevelopment of an oral drug to treatmultiple sclerosis. Nat. Rev. Drug Discov. 9, 883-897.   DOI
105 Hyldgaard, M., Sutherland, D. S., Sundh, M., Mygind, T. and Meyer, R. L. (2012) Antimicrobial mechanism of monocaprylate. Appl. Environ. Microbiol. 78, 2957-2965.   DOI
106 Kachko, I., Traitel, T., Goldbart, R., Silbert, L., Katz, M., Bashan, N., Jelinek, R., Rudich, A. and Kost, J. (2015) Polymeric carrier-mediated intracellular delivery of phosphatidylinositol-3,4,5-trisphosphate to overcome insulin resistance. J. Drug Target. 23, 698-709.   DOI
107 Duscha, A., Gisevius, B., Hirschberg, S., Yissachar, N., Stangl, G. I., Eilers, E., Bader, V., Haase, S., Kaisler, J., David, C., Schneider, R., Troisi, R., Zent, D., Hegelmaier, T., Dokalis, N., Gerstein, S., Del Mare-Roumani, S., Amidror, S., Staszewski, O., Poschmann, G., Stuhler, K., Hirche, F., Balogh, A., Kempa, S., Trager, P., Zaiss, M. M., Holm, J. B., Massa, M. G., Nielsen, H. B., Faissner, A., Lukas, C., Gatermann, S. G., Scholz, M., Przuntek, H., Prinz, M., Forslund, S. K., Winklhofer, K. F., Muller, D. N., Linker, R. A., Gold, R. and Haghikia, A. (2020) Propionic acid shapes the multiple sclerosis disease course by an immunomodulatory mechanism. Cell 180, 1067-1080.e16.   DOI
108 Fahy, E., Cotter, D., Sud, M. and Subramaniam, S. (2011) Lipid classification, structures and tools. Biochim. Biophys. Acta 1811, 637-647.   DOI
109 Fernandez, C., Sandin, M., Sampaio, J. L., Almgren, P., Narkiewicz, K., Hoffmann, M., Hedner, T., Wahlstrand, B., Simons, K., Shevchenko, A., James, P. and Melander, O. (2013) Plasma lipid composition and risk of developing cardiovascular disease. PLoS ONE 8, e71846.   DOI
110 Fan, R., Kim, J., You, M., Giraud, D., Toney, A. M., Shin, S. H., Kim, S. Y., Borkowski, K., Newman, J. W. and Chung, S. (2020) α-Linolenic acid-enriched butter attenuated high fat diet-induced insulin resistance and inflammation by promoting bioconversion of n-3 PUFA and subsequent oxylipin formation. J. Nutr. Biochem. 76, 108285.   DOI
111 Jung, T. W., Kim, S. T., Lee, J. H., Chae, S. I., Hwang, K. W., Chung, Y. H., Kim, H. C., Abd El-Aty, A. M., Lee, T. J., Park, E. S. and Jeong, J. H. (2018) Phosphatidylcholine causes lipolysis and apoptosis in adipocytes through the tumor necrosis factor alpha-dependent pathway. Pharmacology 101, 111-119.   DOI
112 Henry, B. D., Neill, D. R., Becker, K. A., Gore, S., Bricio-Moreno, L., Ziobro, R., Edwards, M. J., Muhlemann, K., Steinmann, J., Kleuser, B., Japtok, L., Luginbuhl, M., Wolfmeier, H., Scherag, A., Gulbins, E., Kadioglu, A., Draeger, A. and Babiychuk, E. B. (2015) Engineered liposomes sequester bacterial exotoxins and protect from severe invasive infections in mice. Nat. Biotechnol. 33, 81-88.   DOI
113 Juge, N., Gray, J. A., Omote, H., Miyaji, T., Inoue, T., Hara, C., Uneyama, H., Edwards, R. H., Nicoll, R. A. and Moriyama, Y. (2010) Metabolic control of vesicular glutamate transport and release. Neuron 68, 99-112.   DOI
114 Jumina, J., Lavendi, W., Singgih, T., Triono, S., Kurniawan, Y. S. and Koketsu, M. (2019) Preparation of monoacylglycerol derivatives from indonesian edible oil and their antimicrobial assay against Staphylococcus aureus and Escherichia coli. Sci. Rep. 9, 10941.   DOI
115 Jung, T. W., Park, T., Park, J., Kim, U., Je, H. D., Kim, H. D., Cho, S. W., Abd El-Aty, A. M., Song, J. H., Kim, H. C., Shin, Y. K. and Jeong, J. H. (2019) Phosphatidylcholine causes adipocyte-specific lipolysis and apoptosis in adipose and muscle tissues. PLoS ONE 14, e0214760.   DOI
116 Kadowaki, A., Sada, N., Juge, N., Wakasa, A., Moriyama, Y. and Inoue, T. (2017) Neuronal inhibition and seizure suppression by acetoacetate and its analog, 2-phenylbutyrate. Epilepsia 58, 845-857.   DOI
117 Khanum, R. and Thevanayagam, H. (2017) Lipid peroxidation: its effects on the formulation and use of pharmaceutical emulsions. Asian J. Pharm. Sci. 12, 401-411.   DOI
118 Da Silva, A., Caldas, A. P. S., Hermsdorff, H. H. M., Bersch-Ferreira, A. C., Torreglosa, C. R., Weber, B. and Bressan, J. (2019) Triglyceride-glucose index is associated with symptomatic coronary artery disease in patients in secondary care. Cardiovasc. Diabetol. 18, 89.   DOI
119 Facchin, S., Vitulo, N., Calgaro, M., Buda, A., Romualdi, C., Pohl, D., Perini, B., Lorenzon, G., Marinelli, C., D'Inca, R., Sturniolo, G. C. and Savarino, E. V. (2020) Microbiota changes induced by microencapsulated sodium butyrate in patients with inflammatory bowel disease. Neurogastroenterol. Motil. 32, 13-25.
120 Fujino, T., Yamada, T., Asada, T., Tsuboi, Y., Wakana, C., Mawatari, S. and Kono, S. (2017) Efficacy and blood plasmalogen changes by oral administration of plasmalogen in patients with mild Alzheimer's disease and mild cognitive impairment: a multicenter, randomized, double-blind, placebo-controlled trial. EBioMedicine 17, 199-205.   DOI
121 Lee, B., Sur, B. J., Han, J. J., Shim, I., Her, S., Lee, Y. S., Lee, H. J. and Hahm, D. H. (2015) Oral administration of squid lecithin-transphosphatidylated phosphatidylserine improves memory impairment in aged rats. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 56, 1-10.   DOI
122 MacLeod, M. K. L., McKee, A. S., David, A., Wang, J., Mason, R., Kappler, J. W. and Marrack, P. (2011) Vaccine adjuvants aluminum and monophosphoryl lipid a provide distinct signals to generate protective cytotoxic memory CD8 T cells. Proc. Natl. Acad. Sci. U.S.A. 108, 7914-7919.   DOI
123 Marat, A. L. and Haucke, V. (2016) Phosphatidylinositol 3-phosphates-at the interface between cell signalling and membrane traffic. EMBO J. 35, 561-579.   DOI
124 Shah, N. K., Gupta, S. K., Wang, Z. and Meenach, S. A. (2019) Enhancement of macrophage uptake via phosphatidylserine-coated acetalated dextran nanoparticles. J. Drug Deliv. Sci. Technol. 50, 57-65.   DOI
125 Khazanov, E., Priev, A., Shillemans, J. P. and Barenholz, Y. (2008) Physicochemical and biological characterization of ceramide-containing liposomes: paving the way to ceramide therapeutic application. Langmuir 24, 6965-6980.   DOI
126 Kim, C. H. (2021) Control of lymphocyte functions by gut microbiotaderived short-chain fatty acids. Cell. Mol. Immunol. 18, 1161-1171.   DOI
127 Moon, E. K., Wang, L. C., Dolfi, D. V., Wilson, C. B., Ranganathan, R., Sun, J., Kapoor, V., Scholler, J., Pure, E., Milone, M. C., June, C. H., Riley, J. L., Wherry, E. J. and Albelda, S. M. (2014) Multifactorial T-cell hypofunction that is reversible can limit the efficacy of chimeric antigen receptor-transduced human T cells in solid tumors. Clin. Cancer Res. 20, 4262-4273.   DOI
128 Paris, F., Fuks, Z., Kang, A., Capodieci, P., Juan, G., Ehleiter, D., Haimovitz-Friedman, A., Cordon-Cardo, C. and Kolesnick, R. (2001) Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science 293, 293-297.   DOI
129 Saito, O., Svensson, C. I., Buczynski, M. W., Wegner, K., Hua, X. Y., Codeluppi, S., Schaloske, R. H., Deems, R. A., Dennis, E. A. and Yaksh, T. L. (2010) Spinal glial TLR4-mediated nociception and production of prostaglandin E2 and TNF. Br. J. Pharmacol. 160, 1754-1764.   DOI
130 Simopoulos, A. P. (2016) An increase in the omega-6/omega-3 fatty acid ratio increases the risk for obesity. Nutrients 8, 128.   DOI
131 Song, W., Tiruthani, K., Wang, Y., Shen, L., Hu, M., Dorosheva, O., Qiu, K., Kinghorn, K. A., Liu, R. and Huang, L. (2018) Trapping of lipopolysaccharide to promote immunotherapy against colorectal cancer and attenuate liver metastasis. Adv. Mater. 30, e1805007.
132 Wang, R. X., Lee, J. S., Campbell, E. L. and Colgan, S. P. (2020) Microbiota-derived butyrate dynamically regulates intestinal homeostasis through regulation of actin-associated protein synaptopodin. Proc. Natl. Acad. Sci. U.S.A. 117, 11648-11657.   DOI
133 Zhang, T., De Waard, A. A., Wuhrer, M. and Spaapen, R. M. (2019a) The role of glycosphingolipids in immune cell functions. Front. Immunol. 10, 90.   DOI
134 Won, K. B., Park, G. M., Lee, S. E., Cho, I. J., Kim, H. C., Lee, B. K. and Chang, H. J. (2018) Relationship of insulin resistance estimated by triglyceride glucose index to arterial stiffness. Lipids Health Dis. 17, 268.   DOI
135 Trompette, A., Gollwitzer, E. S., Yadava, K., Sichelstiel, A. K., Sprenger, N., Ngom-Bru, C., Blanchard, C., Junt, T., Nicod, L. P., Harris, N. L. and Marsland, B. J. (2014) Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat. Med. 20, 159-166.   DOI
136 Thompson, B. S., Chilton, P. M., Ward, J. R., Evans, J. T. and Mitchell, T. C. (2005) The low-toxicity versions of LPS, MPL adjuvant and RC529, are efficient adjuvants for CD4+ T cells. J. Leukoc. Biol. 78, 1273-1280.   DOI
137 Albracht-Schulte, K., Gonzalez, S., Jackson, A., Wilson, S., Ramalingam, L., Kalupahana, N. S. and Moustaid-Moussa, N. (2019) Eicosapentaenoic acid improves hepatic metabolism and reduces inflammation independent of obesity in high-fat-fed mice and in HepG2 cells. Nutrients 11, 599.   DOI
138 Bashiri, S., Koirala, P., Toth, I. and Skwarczynski, M. (2020) Carbohydrate immune adjuvants in subunit vaccines. Pharmaceutics 12, 965.   DOI
139 Bisschop, P. H., Bandsma, R. H. J., Stellaard, F., Ter Harmsel, A., Meijer, A. J., Sauerwein, H. P., Kuipers, F. and Romijn, J. A. (2004) Low-fat, high-carbohydrate and high-fat, low-carbohydrate diets decrease primary bile acid synthesis in humans. Am. J. Clin. Nutr. 79, 570-576.   DOI
140 Alabdulkarim, B., Bakeet, Z. A. N. and Arzoo, S. (2012) Role of some functional lipids in preventing diseases and promoting health. J. King Saud Univ. Sci. 24, 319-329.   DOI
141 Arranz-Nicolas, J., Ogando, J., Soutar, D., Arcos-Perez, R., Meraviglia-Crivelli, D., Manes, S., Merida, I. and Avila-Flores, A. (2018) Diacylglycerol kinase α inactivation is an integral component of the costimulatory pathway that amplifies TCR signals. Cancer Immunol. Immunother. 67, 965-980.   DOI
142 Augustin, K., Williams, S., Cunningham, M., Devlin, A. M., Friedrich, M., Jayasekera, A., Hussain, M. A., Holliman, D., Mitchell, P., Jenkins, A., Chen, P. E., Walker, M. C. and Williams, R. S. B. (2018b) Perampanel and decanoic acid show synergistic action against AMPA receptors and seizures. Epilepsia 59, e172-e178.
143 Onodera, T., Futai, E., Kan, E., Abe, N., Uchida, T., Kamio, Y. and Kaneko, J. (2015) Phosphatidylethanolamine plasmalogen enhances the inhibiting effect of phosphatidylethanolamine on γ-secretase activity. J. Biochem. 157, 301-309.   DOI
144 Zheng, L., Kelly, C. J., Battista, K. D., Schaefer, R., Lanis, J. M., Alexeev, E. E., Wang, R. X., Onyiah, J. C., Kominsky, D. J. and Colgan, S. P. (2017) Microbial-derived butyrate promotes epithelial barrier function through IL-10 receptor-dependent repression of claudin-2. J. Immunol. 199, 2976-2984.   DOI
145 Zarringhalam, K., Zhang, L., Kiebish, M. A., Yang, K., Han, X., Gross, R. W. and Chuang, J. (2012) Statistical analysis of the processes controlling choline and ethanolamine glycerophospholipid molecular species composition. PLoS ONE 7, e37293.   DOI
146 N'Goma, J. C. B., Amara, S., Dridi, K., Jannin, V. and Carriere, F. (2012) Understanding the lipid-digestion processes in the GI tract before designing lipid-based drug-delivery systems. Ther. Deliv. 3, 105-124.   DOI
147 Ogretmen, B. (2017) Sphingolipid metabolism in cancer signalling and therapy. Nat. Rev. Cancer 18, 33-50.   DOI
148 Oh, D. Y., Talukdar, S., Bae, E. J., Imamura, T., Morinaga, H., Fan, W., Li, P., Lu, W. J., Watkins, S., M. and Olefsky, J. M. (2010) GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell 142, 687-698.   DOI
149 Parada Venegas, D., De La Fuente, M. K., Landskron, G., Gonzalez, M. J., Quera, R., Dijkstra, G., Harmsen, H. J. M., Faber, K. N. and Hermoso, M. A. (2019) Corrigendum: short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front. Immunol. 10, 1486.   DOI
150 Park, W. J. and Park, J. W. (2020) The role of sphingolipids in endoplasmic reticulum stress. FEBS Lett. 594, 3632-3651.   DOI
151 Parker, M. W. and Feil, S. C. (2005) Pore-forming protein toxins: from structure to function. Prog. Biophys. Mol. Biol. 88, 91-142.   DOI
152 Nastasi, C., Candela, M., Bonefeld, C. M., Geisler, C., Hansen, M., Krejsgaard, T., Biagi, E., Andersen, M. H., Brigidi, P., Odum, N., Litman, T. and Woetmann, A. (2015) The effect of short-chain fatty acids on human monocyte-derived dendritic cells. Sci. Rep. 5, 16148.   DOI
153 Braverman, N. E. and Moser, A. B. (2012) Functions of plasmalogen lipids in health and disease. Biochim. Biophys. Acta Mol. Basis Dis. 1822, 1442-1452.   DOI
154 Back, M., Yurdagul, A., Tabas, I., Oorni, K. and Kovanen, P. K. (2019) Inflammation and its resolution in atherosclerosis: mediators and therapeutic opportunities. Nat. Rev. Cardiol. 16, 389-406.   DOI
155 Barenholz, Y. (2012) Doxil® - The first FDA-approved nano-drug: lessons learned. J. Control. Release 160, 117-134.   DOI
156 Agassandian, M. and Mallampalli, R. K. (2013) Surfactant phospholipid metabolism. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1831, 612-625.   DOI
157 Bridges, D. and Saltiel, A. R. (2015) Phosphoinositides: key modulators of energy metabolism. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1851, 857-866.   DOI
158 Cha, H. J., He, C., Zhao, H., Dong, Y., An, I. S. and An, S. (2016) Intercellular and intracellular functions of ceramides and their metabolites in skin (review). Int. J. Mol. Med. 38, 16-22.   DOI
159 Chang, P. V., Hao, L., Offermanns, S. and Medzhitov, R. (2014) The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc. Natl. Acad. Sci. U.S.A. 111, 2247-2252.   DOI
160 Chang, P., Augustin, K., Boddum, K., Williams, S., Sun, M., Terschak, J. A., Hardege, J. D., Chen, P. E., Walker, M. C. and Williams, R. S. B. (2016) Seizure control by decanoic acid through direct AMPA receptor inhibition. Brain 139, 431-443.   DOI
161 Chen, Y., She, Y., Lei, J., Wang, D., Wu, S. and Men, K. (2021) Medium chain fatty acids: extraction, isolation, purification, bioactive properties and application. IOP Conf. Ser. Earth Environ. Sci. 705, 012013.