• Title/Summary/Keyword: Critical properties

Search Result 2,286, Processing Time 0.036 seconds

A study on conceptual evaluation of structural stability of room-and-pillar underground space (주방식 지하공간의 구조적 안정성 평가개념 정립에 관한 연구)

  • Lee, Chulho;Chang, Soo-Ho;Shin, Hyu-Soung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.6
    • /
    • pp.585-597
    • /
    • 2013
  • In this study, in order to evaluate stability of the room-and-pillar underground structure, a series of preliminary numerical analyses were performed. Design concept and procedure of an underground structure for obtaining a space are proposed, which should be different from structural design for the room-and-pillar in mine. With assumed material properties, a series of numerical analyses were performed by varying size ratios of room and pillar and then the failure modes and location at yielding initiation were investigated. From the results, relationship between the ratio of pillar width to the roof span (w/s) and overburden pressure at failure initiation shows a relatively linear relation, and the effect of w/s on structural stability is much more critical than the ratio of pillar width and height (w/H) which is a crucial parameter in design of the room-and-pillar mining. It means that roof tensile failure and shear failure at shoulder and pillar are necessary to be considered together for confirming overall structural stability of the room-and-pillar structure, rather than considering the pillar stability only in mining. Failure modes and location at failure initiation were varied with respect to the ratio of room and pillar widths. Therefore, it is necessary to simultaneously consider stability of both roof span and pillar for design of underground structure by the room-and-pillar method.

Properties of Solar Radiation Components Reflected by the Sea Surface: - A Case of Jeju Island, South Korea - (해수면에 의해 반사된 태양복사 성분의 특성: 남한의 제주도 사례)

  • Fumichika, Uno;Hayashi, Yousay;Hwang, Soo-Jin;Kim, Hae-Dong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.13 no.2
    • /
    • pp.48-55
    • /
    • 2011
  • Solar radiation components reflected by the sea surface ($R_{ss}\uparrow$) are additional energy sources comprising the solar radiation regime. Previous studies, based on observational approaches, indicated that $R_{ss}\uparrow$ is an available climatological resource. However, an estimation process for $R_{ss}\uparrow$ has not been established. In this case study over Jeju Island in South Korea, we applied a new estimation process to solar radiation modeling and discussed the spatial distribution of $R_{ss}\uparrow$ and its seasonal variation. Our results showed that the illuminated area and the intensity of $R_{ss}\uparrow$ became greatest at the winter solstice and least at the summer solstice. We estimated the illuminated area of $R_{ss}\uparrow$ as it expanded over the southern slope of Jeju Island. At the winter solstice, on a daily basis, the area and intensity of illumination by $R_{ss}\uparrow$ were $182.3km^2$ and $0.41\;MJ\;m^{-2}\;day\;{-1}$, respectively. Comparing the daily accumulative and instantaneous values of $R_{ss}\uparrow$ intensity, the difference was about 20 times greater in daily cases than in instantaneous cases. On the other hand, for instantaneous values, the $R_{ss}\uparrow$ intensity accounted for up to 33% of the three components, i.e., direct, diffuse and reflected radiation in winter solstice. In addition, it was estimated that the sea surface reflectance depended on the wind speed. Therefore, in a practical use of this revised model, wind conditions should be considered as a critical factor in estimating $R_{ss}\uparrow$.

Functional Characterization of Phosphorylation of the Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) Nucleocapsid Protein (PRRS 바이러스 Nucleocapsid 단백질 인산화의 기능학적 연구)

  • Lee, Chang-Hee
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.3
    • /
    • pp.287-292
    • /
    • 2009
  • The nucleocapsid (N) protein of porcine reproductive and respiratory syndrome virus (PRRSV) is a basic multifunctional protein which has been reported to be a serine phosphoprotein with yet-identified functions. As a first step towards understanding the general role of N protein phosphorylation during virus replication, the non-phosphorylated mutant N gene was constructed by mutating all serine residues to alanine. This recombinant N protein was identified to be unphosphorylated, confirming that serine residues truly function as core amino acids responsible for N protein phosphorylation. The PRRSV N protein has been shown to possess the biological features of nuclear localization and N-N homodimerization which individually play critical roles in virus infection. In the present study, therefore, it was attempted to investigate whether these two properties of the N protein are modulated by its phosphorylation status. However, experimental results showed that the non-phosphorylated N protein was still present in the nucleus and nucleolus, and was able to associate with itself by non-covalent interactions. Taken together, the data suggest phosphorylation-independent regulation of N protein nuclear transport or oligomerization, thereby implying the potential involvement of phosphorylation in regulating the activities of the N protein at other levels including RNA-binding capacity.

Production Yield Enhancement of Mycosporine-like amino acid(MAA)s in Transformed Microalgae Culture by Radiofrequency (형질전환 미세조류의 고주파 처리 배양을 통한 MAA 생산량 증가)

  • Seo, Hyo Hyun;Song, Mi Young;Kulkarni, Atul;Suh, Sung-Suk;Lee, Taek-Kyun;Moh, Sang Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.3799-3804
    • /
    • 2014
  • In sea water, microalgae are exposed to a range of critical environmental conditions. Microalgae are protected from UV-A radiation due to the presence of mycosporine like amino acids(MAAs). Owing to the UV-A absorption properties of MAAs, they are used widely as a UV protecting ingredient in cosmetics. Therefore, there is a need to increase the production yield of MAAs. This study investigated the production yield of MAAs in transformed microalgae by radiofrequency(RF) exposure. Initially, the Glut-1 gene was transformed to Chlamydomonas hedleyi microalgae as a glucose transporter. The biomass was enhanced after Glut-1 gene transformation. In addition, the MAAs production yield was increased during large scale production in bioreactors due to the RF treatment. Therefore, purified extracts of MAAs can be used as a sun block material in the cosmetic industrial field.

Effect of Transverse Convex Curvature on Turbulent Fluid Flow in Fuel Channel (핵연료 수로내 난류 유동에 대한 횡방향 볼록구배의 영향)

  • Lee, Yung;Ahn, Seung-Hoon;Kim, Hyong-Chol
    • Nuclear Engineering and Technology
    • /
    • v.26 no.3
    • /
    • pp.440-452
    • /
    • 1994
  • Nuclear fuel bundles are designed such that the heat flux at a-fuel pin surface should not exceed the critical heat flux (CHF) during normal operation and anticipated transient. Therefore, evaluation of the CHF for fuel bundle is demanded in an exact and reliable manner. One of the major concerns with the current application of CHF correlations is that the CHF based on circular tubes is applied to the fuel bundle subchannel analysis, mainly in terms of the hydraulic diameter with correction factors which may result in a source of possibly large uncertainties in CHF prediction. The hydraulic diameter does not recognize the local properties of fluid nor such effect as the surface curvature; the turbulence action on the convex surface is much more pronounced than that on the concave surface. Even for the tube having concave curvature, the effect of tube diameter on CHF becomes important with decreasing diameter. These facts imply that the convex curvature effect is significant and crucial to the reliable CHF prediction. This paper reviews and discusses analytical and experimental aspects of effect of transverse convex curvature in incompressible turbulent flow and heat transfer, and on CHF. Flow models to quantify this effect are briefly mentioned and future works are recommended.

  • PDF

Halotolerant Plant Growth Promoting Bacteria Mediated Salinity Stress Amelioration in Plants

  • Shin, Wansik;Siddikee, Md. Ashaduzzaman;Joe, Manoharan Melvin;Benson, Abitha;Kim, Kiyoon;Selvakumar, Gopal;Kang, Yeongyeong;Jeon, Seonyoung;Samaddar, Sandipan;Chatterjee, Poulami;Walitang, Denver;Chanratana, Mak;Sa, Tongmin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.4
    • /
    • pp.355-367
    • /
    • 2016
  • Soil salinization refers to the buildup of salts in soil to a level toxic to plants. The major factors that contribute to soil salinity are the quality, the amount and the type of irrigation water used. The presented review discusses the different sources and causes of soil salinity. The effect of soil salinity on biological processes of plants is also discussed in detail. This is followed by a debate on the influence of salt on the nutrient uptake and growth of plants. Salinity decreases the soil osmotic potential and hinders water uptake by the plants. Soil salinity affects the plants K uptake, which plays a critical role in plant metabolism due to the high concentration of soluble sodium ($Na^+$) ions. Visual symptoms that appear in the plants as a result of salinity include stunted plant growth, marginal leaf necrosis and fruit distortions. Different strategies to ameliorate salt stress globally include breeding of salt tolerant cultivars, irrigation to leach excessive salt to improve soil physical and chemical properties. As part of an ecofriendly means to alleviate salt stress and an increasing considerable attention on this area, the review then focuses on the different plant growth promoting bacteria (PGPB) mediated mechanisms with a special emphasis on ACC deaminase producing bacteria. The various strategies adopted by PGPB to alleviate various stresses in plants include the production of different osmolytes, stress related phytohormones and production of molecules related to stress signaling such as bacterial 1-aminocyclopropane-1-carboxylate (ACC) derivatives. The use of PGPB with ACC deaminase producing trait could be effective in promoting plant growth in agricultural areas affected by different stresses including salt stress. Finally, the review ends with a discussion on the various PGPB activities and the potentiality of facultative halophilic/halotolerant PGPB in alleviating salt stress.

A Critical Review on Setting up the Concept, Timing and Mechanism of Tertiary Tilted Flexural Mode of the Korean Peninsula: A new hypothesis derived from plate tectonics ('신생대 제3기 경동성 요곡운동'의 개념, 시기, 기작에 관한 비판적 고찰: 판구조운동 기원의 새로운 가설)

  • Shin, Jaeryul;Hwang, Sangill
    • Journal of the Korean Geographical Society
    • /
    • v.49 no.2
    • /
    • pp.200-220
    • /
    • 2014
  • This study reexamines the old concept and reviews prevalent statements on Cenozoic vertical motions of the peninsula that have been uncritically repeated in our academia. The contents of this paper are redefinition of the notion, tilted flexure or warping, and a suggestion for a new time set and properties of the deformation, followed by a new model on its influencing factors and processes. In conclusion, the Cenozoic vertical motion of the Korean peninsula can be reified further with an epeirogenic movement of uplift in the east side-subsidence in the west side of the peninsula since the Neogene (23 Ma). However, the regional boundary for areas of uplift and subsidence is not likely in the Korean peninsula but broader farther to East China and the southern part of Russia. It can be best understood that mantle convection produced by subducting activities in the Western Pacific Subduction Zone causes the uplift and subsidence of earth surface around NE Asia. In addition, faultings in the upper lithosphere induced by in-situ plate boundary stresses accelerate regional uplift in the peninsula since the Quaternary. Controversies that are still standing such as current uplift movements along the western coast of the peninsula during the late Quaternary could be precisely discussed with future research providing detailed information on it.

  • PDF

Solute Carrier SLC41A1 'A MINI REVIEW'

  • Basnet Hom Bahadur
    • Environmental Mutagens and Carcinogens
    • /
    • v.25 no.2
    • /
    • pp.60-65
    • /
    • 2005
  • The human solute carrier, SLC41Al, is a $Mg^{2}+$ transporter that is regulated by extracellular magnesium. Although intracellular magnesium plays a fundamental role in cellular metabolism, little is known about how $Mg^{2}+$ is taken up and controlled by cells. Magnesium plays a fundamental role in cellular metabolism so that its control within the body is critical. Magnesium homeostasis is principally a balance between intestinal absorption of dietary magnesium and renal excretion of urinary magnesium. The kidney, mainly the distal convoluted tubule, controls magnesium reabsorption. Although renal reabsorption is under the influence of many hormones, selective regulation of magnesium transport is due to intrinsic control involving transcriptional processes and synthesis of transport proteins. Using microarray analysis, identification of the genetic elements involved with this transcriptional control has been begun. SLC41A1(GenBank Accession No. AJ514402), comprises 10 putative transmembrane domains, two of which are highly homologous to the integral membrane part of the prokaryote transports $Mg^{2}+$ and other divalent cations $Sr^2+,\;Zn^2+,\;Cu^2+,\;Fe^2+,\;Co^2+,\;Ba^2+,\;and\;Cd^2+,\;but\;not\;Ca^2+,\;Mn^2+,\;and\;Ni^2+.$ Transport of $Mg^{2}+$ by SLC41Al is rheogenic, voltage dependent, and not coupled to Na or Cl. Expressed SLC41Al transports a range of other divalent cations: $Mg^{2+},\;Sr^{2+},\;Zn^{2+},\;Cu^{2+},\;Fe^{2+},\;Co^{2+},\;Ba^{2+},\;and\;Cd^{2+}$. The divalent cations $Ca^{2+},\;Mn^{2+},\;and\;Ni^{2+}$and the trivalent ion $Gd^{3+}$ did not induce currents nor did they inhibit $Mg^{2+}$ transport. The nonselective cation $La^{3+}$ abolishes $Mg^{2+}$ uptake. Computer analysis of the SLC41Al protein structure reveals that it belongs to MgtE protein family & suggested that the human solute carrier, SLC41Al, might be a eukaryotic $Mg^{2+}$ transporter closely related $(60-70\%)$ protein encoded by SLC41A2 is a $Mg^{2}+$ transporter that might be involved in magnesium homeostasis in epithelial cells also transports a range of other divalent cations: $Ba^2,\;Ni^2,\;CO^2,\;Fe^2,\;or\;Mn^2,\;but\;not\;Ca^2,\;Zn^2,\;or\;Cu^{2+}$ that may have related functional properties.

  • PDF

A Literature Review on Media-Based Learning in Science (과학과 미디어 기반 학습 관련 문헌 연구)

  • Byun, Taejin
    • Journal of The Korean Association For Science Education
    • /
    • v.37 no.3
    • /
    • pp.417-427
    • /
    • 2017
  • Media is the medium that impart information beyond time and space. They refer to characters or images that serve as means to convey information. From old media such as newspapers and television to new media such as the internet and smart phones, media has developed cumulatively with the development of technology. The goal of media education is to develop the understanding of the properties of media, the ability of critical interpretation of media and selective acceptance. Furthermore it is to cultivate the ability to express meaning creatively and communicate through media. I carried out 'the research of Korean classroom instruction models based on media' with Korean language and social studies education researchers from July 2016 to December 2016. This study is a fundamental study of the project. Based on 58 research papers published between 2006 and 2016, research trends and factors were extracted through literature studies related to media-based science learning. The Result has shown that the studies related to media-based science learning is on the rise, and more than half of all researchers studied about elementary school students. The studies were divided into research on students, research on teachers and pre-service teachers, research on smart devices or media contents, and research on the development of digital textbooks. Among the four variables, there were many researches related to students' cognitive and affective development, and the development and application of media contents.

The Estimation and Comparison of Flexural Crack Width Considering Bonding Characteristics in Reinforced Concrete Members (부착특성을 고려한 철근콘크리트 부재의 휨 균열폭 산정 및 비교)

  • Ko, Won-Jun;Min, Byung-Chul;Park, Sun-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.5 s.95
    • /
    • pp.579-588
    • /
    • 2006
  • In recent years, the availability of high-strength reinforcing and prestressing steels leads us to build economically and efficiently designed concrete structural members. One of critical problems faced to the structural engineers dealing with these types of structural member is controls of crack width that is used as a criterion for the serviceability in the limit state design. Especially, flexural cracking must be controlled to secure the structural safety and to improve the durability as well as serviceability of the load carving members. The proposed method utilizes the results of pure tension test in which tensile loads are applied both side of specimen, done by Ikki. The bond characteristics of deformed reinforcing bar under pure tension is considered by the area of concrete and rib area. The results of proposed method are compared with the test data and the results show that the proposed method can take into account the dimensions, variation of sectional properties, and direction of reinforcing and gives more accurate maximum bond stress and corresponding relative slip than the existing methods. the characteristics of bonding is considered by using dimensionless slip magnitude and effective reinforcement ratio. The validity of the proposed equation is verified by test experimental data.