Journal of the Korean Data and Information Science Society
/
제19권2호
/
pp.413-420
/
2008
This paper suggests a marginal logit mixed-effects for analyzing repeated binary response data. Since binary repeated measures are obtained over time from each subject, observations will have a certain covariance structure among them. As a plausible covariance structure, 1st order auto-regressive correlation structure is assumed for analyzing data. Generalized estimating equations(GEE) method is used for estimating fixed effects in the model.
Kaneki, N.;Shimada, K.;Yamada, H.;Miura, T.;Kamimura, H.;Tanaka, H.
한국감성과학회:학술대회논문집
/
한국감성과학회 2002년도 춘계학술대회 논문집
/
pp.257-260
/
2002
The impressions for odors are subjective and have individual differences. In this study, the Impressions of odors were investigated by covariance structure analysis. 46 subjects (men in their twenty) recorded their reactions to ten odorants by grading them on a seven-point scale in terms of twelve adjective pairs. Their reactions were quantified by using factor analysis and covariance structure analysis. The factors were extracted as "preference", "arousal" and "persistency". The subjects were classified into three groups according to the most suitable causal models (structural equation models). Each group had different causal relationship and different impression structure for odors. It was suggested that there is a possibility to evaluate the subjective impression of odor using covariance structure analysis.
Communications for Statistical Applications and Methods
/
제20권3호
/
pp.235-240
/
2013
Generalized linear mixed models(GLMMs) are frequently used for the analysis of longitudinal categorical data when the subject-specific effects is of interest. In GLMMs, the structure of the random effects covariance matrix is important for the estimation of fixed effects and to explain subject and time variations. The estimation of the matrix is not simple because of the high dimension and the positive definiteness; subsequently, we practically use the simple structure of the covariance matrix such as AR(1). However, this strong assumption can result in biased estimates of the fixed effects. In this paper, we introduce Bayesian modeling approaches for the random effects covariance matrix using a modified Cholesky decomposition. The modified Cholesky decomposition approach has been used to explain a heterogenous random effects covariance matrix and the subsequent estimated covariance matrix will be positive definite. We analyze metabolic syndrome data from a Korean Genomic Epidemiology Study using these methods.
본 논문에서는 반복인자가 여러 개인 반복측정자료에 대하여 반복인자간의 상관성을 고려한 복합공분산(composite covariance) 모형을 살펴보았다. 그러나 반복인자가 3개 이상인 경우에는 기존의 통계프로그램을 이용하여 적합하는 것이 불가능하다. 복합공분산 모형을 실제 자료에 적합하기위해 반복인자의 차원을 축소한 모형과 랜덤효과 모형을 이용하여 근사적으로 적합하는 방법을 제시하고 883명으로부터 수집한 반복인자가 3개인 혈압자료에 적용하였다.
Journal of the Korean Data and Information Science Society
/
제21권1호
/
pp.1-9
/
2010
본 논문은 분할구 실험에서 반복측정 요인이 처치의 한 요인으로 고려될 때, 실험자료의 분석을 위한 혼합모형과 모형내 미지모수의 추론을 위한 방법을 논의한다. 반복측정 요인으로 공간요인을 고려하고 공간요인의 수준은 분할구에 할당되나 연구자가 임의로 배정할 수 없는 실험환경이 가정된다. 이러한 실험의 특성을 갖는 자료벡터의 확률분포로 복합대칭의 공분산 구조를 갖는 다변량 정규분포를 논의하고 있다. 또한, 가정된 실험환경에 부합하는 적합한 자료의 예를 통하여 제시된 모형의 타당성과 관련모수들의 추론방법을 다루고 있다.
The objective of this study is to suggest modified Covariance Structure Analysis that combine with existing Multivariate Statistical Method which is used Casual Analysis Method in Management Information. For this purpose, we'll consider special feature and limitation about Correlation Analysis, Regression Analysis, Path Analysis and connect Covariance Structure Analysis with Statistical Factor Analysis so that theoretical casual model compare with variables structure in collecting data. A example is also presented to show the practical applicability of this approach.
Objective: In a statistical linear model estimating the center of rotation of a human hip joint, which is the parameter related to the mean of response vectors, assumptions of homoscedasticity and independence of position vectors measured repeatedly over time in the model result in an inefficient parameter. We, therefore, should take into account the variance-covariance structure of longitudinal responses. The purpose of this study was to estimate the efficient center of rotation vector of the hip joint by using covariance pattern models. Method: The covariance pattern models are used to model various kinds of covariance matrices of error vectors to take into account longitudinal data. The data acquired from functional motions to estimate hip joint center were applied to the models. Results: The results showed that the data were better fitted using various covariance pattern models than the general linear model assuming homoscedasticity and independence. Conclusion: The estimated joint centers of the covariance pattern models showed slight differences from those of the general linear model. The estimated standard errors of the joint center for covariance pattern models showed a large difference with those of the general linear model.
연구에서는 공분산구조분석을 실시하기 위해 주로 사용하고 있는 AMOS 소프트웨어에 대하여 알아보려고 한다. 응용소프트웨어에서 활용된 수학적인 모형을 알지 못하면, 구조방정식에 대한 충분한 이해를 할 수 없으며, 구조방정식에 대한 8가지 가정이 어떻게 구현되는지 알 수 가 없다. 따라서 본 연구에서는 구조방정식모형 연구에서 주로 활용되었던 LISREL 프로그램으로 RAM과 MOSAN을 구현하였고 AMOS 결과와 비교분석하였다. 연구 결과에 따르면 AMOS프로그램은 8가지의 모든 가정을 따르지 않는 것으로 나타났다. AMOS 프로그램이 MOSAN보다는 RAM으로 구현되고 있음을 본 연구를 통해 알 수 있다. AMOS 소프트웨어 프로그램은 잠재변수(F)와 측정오차(e)간의 상관값을 산출할 때 충분히 추정을 하지 못하고 부분적으로만 추정하여 값을 산출하고 있음을 알 수 있었다.
Communications for Statistical Applications and Methods
/
제24권1호
/
pp.81-96
/
2017
Cumulative logit random effects models are typically used to analyze longitudinal ordinal data. The random effects covariance matrix is used in the models to demonstrate both subject-specific and time variations. The covariance matrix may also be homogeneous; however, the structure of the covariance matrix is assumed to be homoscedastic and restricted because the matrix is high-dimensional and should be positive definite. To satisfy these restrictions two Cholesky decomposition methods were proposed in linear (mixed) models for the random effects precision matrix and the random effects covariance matrix, respectively: modified Cholesky and moving average Cholesky decompositions. In this paper, we use these two methods to model the random effects precision matrix and the random effects covariance matrix in cumulative logit random effects models for longitudinal ordinal data. The methods are illustrated by a lung cancer data set.
본 논문은 실험단위들의 구조적 특성으로 지분관계를 갖는 실험을 행해야 하는 경우를 가정한다. 지분계획하에서 처리를 구성하는 요인으로 반복측정 요인을 고려한다. 반복측정 요인의 수준들이 비확률화에 의해 지분구조의 실험단위들에 배정될 때, 비확률화에 따른 실험의 특성을 감안한 모형으로 복합대칭의 공분산 구조하에서 혼합효과 모형을 논의하고 있다. 처리의 일부 요인들이 시간 또는 공간상의 제약으로 인해 지분구조의 실험단위들에 임의적으로 배정될 수 없을 때, 지분구조의 실험단위들에 대한 반응 값들은 어떤 구조적 상관관계를 나타내는 값들로 관측될 수 있음을 예상할 수 있다. 자료의 구조적 상관성을 고려한 공분산 구조하의 선형모형으로 확률요인과 고정요인을 포함하는 혼합효과의 모형을 제시하고 모형내 미지모수들에 대한 추론방법을 다루고 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.