Browse > Article
http://dx.doi.org/10.5103/KJSB.2018.28.2.127

Inference on the Joint Center of Rotation by Covariance Pattern Models  

Kim, Jinuk (Department of Physical Education, Kunsan National University)
Publication Information
Korean Journal of Applied Biomechanics / v.28, no.2, 2018 , pp. 127-134 More about this Journal
Abstract
Objective: In a statistical linear model estimating the center of rotation of a human hip joint, which is the parameter related to the mean of response vectors, assumptions of homoscedasticity and independence of position vectors measured repeatedly over time in the model result in an inefficient parameter. We, therefore, should take into account the variance-covariance structure of longitudinal responses. The purpose of this study was to estimate the efficient center of rotation vector of the hip joint by using covariance pattern models. Method: The covariance pattern models are used to model various kinds of covariance matrices of error vectors to take into account longitudinal data. The data acquired from functional motions to estimate hip joint center were applied to the models. Results: The results showed that the data were better fitted using various covariance pattern models than the general linear model assuming homoscedasticity and independence. Conclusion: The estimated joint centers of the covariance pattern models showed slight differences from those of the general linear model. The estimated standard errors of the joint center for covariance pattern models showed a large difference with those of the general linear model.
Keywords
Hip joint; Center of rotation; Longitudinal data; Covariance pattern model;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Laird, N. M. & Ware, J. H. (1982). Random-effects models for longitudinal data. Biometrics, 38, 963-974.   DOI
2 Littell, R. C., Pendergast, J. & Natarajan, R. (2000). Tutorial in biostatistics: Modelling covariance structure in the analysis of repeated measures data. Statistics in Medicine, 19, 1793-1819.   DOI
3 Liu, S., Rovine, M. J. & Molenaar, P. C. M. (2012). Selecting a linear mixed model for longitudinal data: Repeated measures analysis of variance, covariance pattern model, and growth curve approaches. Psychological Methods, 17, 15-30.   DOI
4 Ojeda, J., Martinez-Reina, J. & Mayo, J. (2014). A method to evaluate human skeletal models using marker residuals and global optimization. Machanism and Machine Theory, 73, 259-272.   DOI
5 Piazza, S. J., Erdemir, A., Okita, N. & Cavanagh, P. R. (2004). Assessment of the functional method of hip joint center location subject to reduced range of hip motion. Journal of Biomechanics, 37, 349-356.   DOI
6 Pinheiro, J. C. & Bates, D. M. (2000). Mixed-effects models in S and SPLUS. New York, NY: Springer Verlag.
7 Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., Heisterkamp, S., Van Willigen, B. & Maintainer, R. (2017). Package 'nlme'. Linear and Nonlinear Mixed Effects Models, version, 3-1.
8 Schluchter, M. D. (1988). Analysis of incomplete multivariate data using linear models with structured covariance matrices. Statistics in Medicine, 7, 317-324.   DOI
9 Siston, R. A. & Delp, S. L. (2006). Evaluation of a new algorithm to determine the hip joint center. Journal of Biomechanics, 39, 125-130.   DOI
10 Ware, J. H. (1985). Linear models for the analysis of longitudinal studies. The American Statistician, 39, 95-101.
11 Ehrig, R. M., Taylor, W. R., Duda, G. N. & Heller, M. O. (2007). A survey of formal methods for determining the centre of rotation of ball joint. Journal of Biomechanics, 40, 2150-2157.   DOI
12 Wolfinger, R. (1993). Covariance structure selection in general mixed models. Communications in Statistics-Simulation and Computation, 22, 1079-1106.   DOI
13 Wolfinger, R. (1996). Heterogeneous variance-covariance structures for repeated measures. Journal of Agricultural, Biological, and Environmental Statistics, 1, 205-230.
14 Wu, G., Siegler, S., Allard, P., Kirtley, C., Leardini, A., Rosenbaum, D., . . . & Stokes, I. (2002). ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion-part I: ankle, hip, and spine, Journal of Biomechanics, 35, 543-548.   DOI
15 Cereatti, A., Croce, U. D. & Cappozzo, A. (2006). Reconstruction of skeletal movement using skin markers: Comparative assessment of bone pose estimators. Journal of Neuroengineering and Rehabilitation, 3: 7, 1-12.   DOI
16 Cnaan, A., Laird, N. M. & Slasor, P. (1997). Tutorial in biostatistics: Using the general linear mixed model to analyse unbalanced repeated measures and longitudinal data. Statistics in Medicine, 16, 2349-2380.   DOI
17 Diggle, P. J., Heagerty, P., Liang, K. Y. & Zeger, S. L. (2002). Analysis of longitudinal data (2nd ed.). New York, NY: Oxford University Press.
18 De Rosario, H., Page, A., Besa, A. & Valera, A. (2013). Propagation of soft tissue artifacts to the center of rotation: A model for the correction of functional calibration techniques. Journal of Biomechanics, 46, 2619-2625.   DOI
19 Fitzmaurice, G. M., Laird, N. M. & Ware, J. H. (2004). Applied longitudinal analysis. Hoboken, NJ: John Wiley & Sons.
20 Galecki, A. & Burzykowski, T. (2013). Linear mixed-effects models using R: A step-by-step approach. New York, NY: Springer.
21 Hedeker, D. & Gibbons, R. D. (2006). Longitudinal data analysis. Hoboken, NJ: John Wiley & Sons.
22 Jennrich, R. I. & Schluchter, M. D. (1986). Unbalanced repeated-measures models with structured covariance matrices. Biometrics, 42, 805-820.   DOI
23 Kim, J. (2017). A statistical model for marker position in biomechanics. Korean Journal of Sport Biomechanics, 27, 67-74.   DOI
24 Kim, J. (2013). The comparison of sphere fitting methods for estimating the center of rotation on a human joint. Korean Journal of Sport Biomechanics, 23, 53-62.   DOI
25 Kim, J. (2011). Comparison among functional methods of axis of rotation suitable for describing human joint motion. Korean Journal of Sport Biomechanics, 21, 449-458.   DOI