
 
INTRODUCTION 

In biomechanics, rotation matrices, axes of rotation, and the center 
of rotation of a moving body segment or a joint are estimated using 
conventional ordinary least squares (Kim, 2011, 2013). One can approach 
the least squares method with a general linear model (GLM). The re- 
sponse variable in this model is position vectors of the markers attached 
to the points of interest of human body obtained from high-speed 
camera image. It is a longitudinal data measured continuously over 
time. The values measured repeatedly over time are not independent 
of each other, and the variance of the repeated measurements is not 
usually constant over time (Fitzmaurice, Laird, & Ware, 2004; Hedeker 
& Gibbons, 2006). A series of position vectors measured over time in 
the same marker during exercise may have positive correlations. Fur- 
thermore, as a joint moves, the variance of position vectors may be 
changed by soft tissue artefact (STA) (Cereatti, Croce, & Cappozzo, 
2006), which is an error due to movement of the soft tissue such as 
skin. 

In the general linear model, the mean of the marker position vectors 
is expressed as a function of the parameter like the center of rotation of 
a joint (the joint center), and the variance of position vectors, variance-
covariance matrix (covariance matrix), comprise only one parameter 

assuming independence and homoscedasticity for convenience of esti- 
mation (Kim, 2017). The more the data, the more the covariance matrix 
parameters to be estimated, and in some circumstances, this assumption 
may be valid. This may not be a problem if it is limited to estimating the 
center of rotation. However, it may become a problem if the interest 
of the research is related to the variance of the center of the rotation 
estimator, the correlation between the position vectors, and the inter- 
ference about the center of rotation. If the appropriate variance and 
covariance of the measured values are not taken into account, the 
efficiency of the estimated parameters associated with the mean is 
reduced (Diggle et al., 2002; Fitzmaurice et al., 2004) and the validity 
of the estimated variance of the parameters decreases (Cnaan, Laird, & 
Slasor, 1997). The transformation method used in biomechanics (Ehrig, 
Taylor, Duda, & Heller, 2006; Piazza, Erdemir, Okita, & Cavanagh, 2004; 
Siston & Delp, 2006) can estimate the joint center based on the general 
linear model (Kim, 2017). Although the values are repeatedly measured 
over time, they still focus on the modeling of the means assuming 
independence and homoscedasticity. To estimate an efficient joint center, 
attention should be paid to modeling of variance. 

Given the repeatedly measured values of the markers, the experi- 
mental unit, an easy way to model variance is to approach it through 
marginal analysis (Diggle, Heagerty, Liang, & Zeger, 2002). It can model 
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should take into account the variance-covariance structure of longitudinal responses. The purpose of this 
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Method: The covariance pattern models are used to model various kinds of covariance matrices of error 
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joint center were applied to the models. 
 
Results: The results showed that the data were better fitted using various covariance pattern models than 
the general linear model assuming homoscedasticity and independence. 
 
Conclusion: The estimated joint centers of the covariance pattern models showed slight differences from 
those of the general linear model. The estimated standard errors of the joint center for covariance pattern 
models showed a large difference with those of the general linear model. 
 
Keywords: Hip joint, Center of rotation, Longitudinal data, Covariance pattern model 

Copyright ○C  2018 Korean Journal of Sport Biomechanics 
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits 
unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original work is properly cited. 



128 Jinuk Kim KJSB 

Korean Journal of Sport Biomechanics 

the mean and variance separately, and it is distinguished from the 
mixed-effects model (Fitzmaurice et al., 2004; Hedeker & Gibbons, 2006). 
The covariance pattern model is proposed by Jennrich and Schluchter 
(1986), and it is distinguished from the unstructured covariance matrix, 
as it models the covariance matrices of various patterns to explain the 
correlation and heteroscedasticity of the errors of the general linear 
model by using a small number of parameters. The covariance pattern 
model is mainly used in time series analysis (Fitzmaurice et al., 2004; 
Ware, 1985). 

The purpose of this study was to estimate efficient joint centers by 
applying a general linear model to the position vector of the marker, 
which was continuously measured over time in an image analysis. In 
this model, the joint center is difined as the parameter related to the 
mean, and the variance is the covariance pattern model considering 
the correlation between the continuously measured vectors and hetero- 
scedasticity. By applying various covariance patterns to the covariance 
matrix of the marker position vectors, the appropriate models were 
identified, and the joint center vectors were deduced on the basis of 
the models. 

METHODS 

1. Model 

As shown in Figure 1, the three-dimensional position vector 𝐫௜௝ =

 ൫𝑥௜௝ , 𝑦௜௝ , 𝑧௜௝൯
்
 of arbitrary 𝑖 marker (𝑖 = 1, ⋯ , 𝑚), which is repeatedly 

measured (𝑗 = 1, ⋯ , 𝑛) in a frame of images continuously taken by a 
high-speed camera during human body motion can be expressed as 
follows: 

 

𝐫௜௝ = 𝛐 + 𝐀௝𝛕௜ + 𝐞௜௝  (1) 

where 𝛐 (omicron) is the center of rotation (CoR) vector of the joint, 
𝛕௜ is the position vector from the joint center to the marker, and 𝐞௜௝ 
is the error vector. 𝐫௜௝, 𝛐, and 𝐞௜௝ are represented by the proximal seg- 
ment coordinate system (𝐱௉ , 𝐲௉ , 𝐳௉), and 𝛕௜ is expressed by the distal 
segment coordinate system (𝐱஽, 𝐲஽, 𝐳஽). 𝐀௝ is a 3 × 3 transformation 
matrix that transforms the distal segment component into the proximal 
segment component. 𝐫௜௝ and 𝐀௝ are continuously measured and vary 
in n frames. It should be noted that 𝐀௝ is not 𝐀௜௝, which includes the 
subscript 𝑖 of the marker, as 𝐀௝ equally acts as a transformation matrix 
for all markers. Both the proximal and distal coordinate systems are 
rectangular coordinate systems that are fixed to the segments and have 
the same motion as the segments. Thus, the distal segment coordinate 
system serves as the transformation matrix 𝐀௝. Assuming the body is 
a rigid body, 𝛐 and 𝛕௜ are constant vectors. 

 
Equation 1 can be expressed by the equation used in the general 

linear model. 
 

𝐲௜ = 𝐗௜𝛃௜ + 𝐞௜. (2) 

 
𝐲௜(3𝑛 × 1) is a response variable, and 𝐞௜(3𝑛 × 1) is an error. Con- 
secutive 𝑛 position vectors and error vectors of arbitrary 𝑖 marker are 
arrayed in columns, respectively. 

 

𝐲௜ = ቈ
𝐫௜ଵ

⋮
𝐫௜௡

቉, 𝐞௜ = ቈ
𝐞௜ଵ

⋮
𝐞௜௡

቉. (3) 

 
In addition, 𝐗௜(3𝑛 × 6) and 𝛃௜(6 × 1) are 

 

𝐗௜ = [𝟏௡ ⊗ 𝐈ଷ ,  𝐀], 𝛃௜ = ቂ
𝐨
𝛕௜

ቃ (4) 

 
where 𝐗௜ is the covariate, and 𝛃௜ is the regression parameter. 𝟏௡ is a 
vector with the value of 1 for every n components, 𝐈ଷ is an identity 
matrix of size 3, and ⊗ is a Kronecker product. The component 
𝐀(3𝑛 × 3) of 𝐗௜ is a matrix that arrays the transformation matrix 𝐀௝ 
in a column, as in 𝐲௜. 

 

𝐀  = ൥
𝐀ଵ

⋮
𝐀௡

൩. (5) 

 
It should be noted 𝐗௜ and 𝛃௜ in Equation 2. Since matrix 𝐗௜ con- 

sists of 𝐀, it is independent of the subscript 𝑖, like 𝐀. 
 

𝐗ଵ = 𝐗ଶ =   ⋯   = 𝐗௠ (6) 

 
This is referred to as a completely balanced design (Ware, 1985), and 

𝑖 is not needed, but considering entire markers below, the model matrix 
𝐗 will be different from 𝐗௜, so 𝑖 is remained for distinction. On the other 
hand, in terms of 𝛃௜, 𝑖 is necessary because the position of the com- 
ponent 𝛕௜ differs from marker to marker. In addition, 𝛃 in the model 

Figure 1. A hip joint model. Markers on the thigh (distal segment) are
observed with respect to the pelvic (proximal segment) coordinate 
system. 
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considering entire markers varies in size depending on the number of 
markers used. In other words, if all the markers (𝑚) are used, the size of 
𝛃 is (3𝑚 + 3) × 1. The position of a marker can be a vector of the sum 
of the joint center 𝛐 and its own position 𝛕௜. The error 𝐞௜ is assumed 
to come from a normal distribution with 𝐸(𝐞௜) = 𝟎 and 𝑉𝑎𝑟(𝐞௜) = 𝚺௜. 
Therefore, the mean and the variance of 𝐲௜ are as follows: 

 

𝐸(𝐲௜) = 𝛍௜ = 𝐗௜𝛃௜, 

𝑉𝑎𝑟(𝐲௜) = 𝚺௜ (7) 

 
The mean vector 𝛍௜ is a function of 𝐗௜ and 𝛃௜, and the covariance 

matrix 𝚺௜ is a conditional variance (𝑉𝑎𝑟(𝐲௜|𝐗௜) = 𝚺௜) when  𝐗௜ is given. 
In other words, it is the covariance matrix given the joint center 𝛐 and 
the transformed 𝐀௝𝛕௜, which is a within-markers variance. It is com- 
pletely different from the actual covariance matrix of the observed 𝐲௜ 
in the proximal segment coordinate system, and it is difficult to deter- 
mine the form of 𝚺௜ using the observed covariance matrix. 𝚺௜ is a 
positive definite matrix of size of 3𝑛 × 3𝑛. If it is assumed an unstruc- 
tured pattern, 𝚺௜ has no specific pattern. 

 

𝚺௜ =

⎣
⎢
⎢
⎡

𝚺௜ଵ
ଶ 𝚺௜ଵଶ ⋯ 𝚺௜ଵ௡

𝚺௜ଶ 𝚺௜ଶ
ଶ ⋯ 𝚺௜ଶ௡

⋮ ⋮ ⋱ ⋮
𝚺௜௡ଵ 𝚺௜௡ ⋯ 𝚺௜௡

ଶ ⎦
⎥
⎥
⎤

. (8) 

 
The diagonal 𝚺௜௝

ଶ  is a 3 × 3 variance-covariance matrix of 𝑗 frame of 
𝑖 marker, and the off diagonal 𝚺௜௝௝ᇲ is a 3 × 3 matrix of covariance 
between 𝑗 and 𝑗′ (𝑗 ≠ 𝑗 ′) frames of the 𝑖 marker. 

The positions of the markers obtained from the images correspond 
to the balanced data measured at the same time points and time in- 
tervals without missing values. The model in Equation 2 can be applied 
to both balanced and unbalanced data, and the reason for having 
subscript 𝑖 is to distinguish a different number of observed values for 
each experimental unit (Hedeker & Gibbons, 2006). In the case of 
balanced data, it is convenient to handle the marker position vectors 
corresponding to all number of 𝑚 in Equation (2) by stacking them 
in columns. 

 

𝐲  = 𝐗𝛃  + 𝐞, (9) 

 
Here, 𝐲(3𝑁 × 1) , 𝐞(3𝑁 × 1) , 𝛃൫(3𝑚 + 3) × 1൯  and 𝐗൫3𝑁 × (3𝑚 +

3)൯ are 
 

𝐲  =   ൥

𝐲ଵ

⋮
𝐲௠

൩, 𝐞  =   ൥

𝐞ଵ

⋮
𝐞௠

൩, 𝛃  = ൦

𝛐
𝛕ଵ

⋮
𝛕௠

൪, (10) 

 
𝐗 = [𝟏ே  ⊗ 𝐈ଷ  ,  𝐈௠ ⊗ 𝐀]   

 
(𝑁 = 𝑚𝑛). The mean of 𝐲 is 𝐸(𝐲) = 𝛍  = 𝐗𝛃, and the variance of 𝐲 is 
𝑉𝑎𝑟(𝐲) = 𝚺, a matrix with a size of 3𝑁 × 3𝑁. The maximum likelihood 

estimator (MLE) of 𝛃 that substitutes the estimated matrix (𝚺෡) of 𝚺 is 
as follows: 

 

𝛃෡   = ൫𝐗்𝚺෡  ିଵ𝐗൯
ିଵ

𝐗்𝚺෡  ିଵ𝐲  (11) 

 
This is the best linear unbiased estimator (BLUE), and the expected 

value and variance of the estimated 𝛃෡ are 

 

𝐸൫𝛃෡൯ = 𝛃, 

𝑉𝑎𝑟෢ ൫𝛃෡൯ = ൫𝐗்𝚺෡  ିଵ𝐗൯
ିଵ

  (12) 

 
(Fitzmaurice et al., 2004; Gałecki & Burzykowski, 2013). It is important 
to determine the appropriate variance structure because the estimated 
value 𝛃෡ (Equation 11) and the variance of 𝛃෡ (Equation 12) vary according 
to the form of the covariance matrix 𝚺෡. The number of parameters to 
be estimated in the covariance matrix in Equation 8 is 3𝑛(3𝑛 + 1)/2. In 
general, estimates of the covariance matrix of the unstructured pattern 
should be considered as almost unidentifiable because the image data 
has a very large value of 𝑛. In conclusion, the research problem is to 
find a suitable covariance pattern model with fewer parameters. 

2. Assumptions and covariance pattern models 

Assuming independence and homoscedasticity of all measured vec- 
tors including components of (𝑥, 𝑦, 𝑧), covariance matrix becomes 
𝚺  = 𝜎ଶ𝐈ଷே. This is a classical general linear model and corresponds to 
the conventional transformation method for estimating the joint center, 
and in this case the problem becomes considerably simple. However, 
this study involves various models of the covariance matrix 𝚺, which 
shows the correlation and heteroscedasticity of the longitudinal data 
measured continuously over time. 

First, the errors between the different markers were assumed to be 
independent of each other. Therefore, the measured values between 
the different markers were also independent. Second, it was assumed 
that all 𝚺௜ resulted from a common covariance matrix. This means that 
the size and component of the covariance matrices of all markers were 
the same (𝚺ଵ =   ⋯   = 𝚺௠) in the case of balanced data as in this study. 
These two assumptions are general assumptions in the covariance 
pattern models. In addition, two assumptions about the vector were 
added in this study. It was assumed that the components (𝑥, 𝑦, 𝑧) of 
the vector were independent of each other and that the covariance 
matrices of the components (𝑥, 𝑦, 𝑧) were the same. Therefore, the 
diagonal matrix 𝚺௜௝

 ଶ and off diagonal matrix 𝚺௜௝௝ᇲ in Equation 8 are 

 

𝚺௜௝
ଶ = 𝜎௖௜௝

ଶ  𝐈ଷ, 𝚺௜௝௝ᇲ = 𝜎௖௜௝௝ᇲ𝐈ଷ  (13) 

 
where 𝜎௖௜௝

ଶ = 𝜎௫௜௝
ଶ = 𝜎௬௜௝

ଶ = 𝜎௭௜௝
ଶ , 𝜎௖௜௝௝ᇲ = 𝜎௫௜௝௝ᇲ = 𝜎௬௜௝௝ᇲ = 𝜎௭௜௝௝ᇲ , and 

the components (𝑥, 𝑦, 𝑧) of the error vector 𝐞௜  are independent of 
each other and have the same variance. The covariance matrix of the 
components (𝑥, 𝑦, 𝑧) is 𝚺௖௜=𝚺௫௜=𝚺௬௜=𝚺௭௜ , and the covariance matrix of 
any component (𝑥, 𝑦, 𝑧) is 
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𝚺௖௜ =

⎣
⎢
⎢
⎢
⎡

𝛔௖௜ଵ
ଶ 𝛔௖௜ଵଶ ⋯ 𝛔௖௜ଵ

𝛔௖௜ଶଵ 𝛔௖௜ଶ
ଶ

⋮ ⋱ ⋮
𝛔௖௜௡ଵ ⋯ 𝛔௖௜௡

ଶ ⎦
⎥
⎥
⎥
⎤

. (14) 

 
Therefore, the covariance matrix of arbitrary marker 𝑖 is 
 

𝚺௜ = 𝚺௖௜ ⊗ 𝐈ଷ (15) 

 
The covariance matrix 𝚺 of all the markers is a block-diagonal matrix 

consisting of a single marker covariance matrix 𝚺௜ as follows: 
 

𝚺  = 𝑑𝑖𝑎𝑔(𝚺ଵ, ⋯ , 𝚺௠) (16) 

 
The estimator (𝚺෡) of the covariance matrix used in Equations 11 

and 12 is mainly estimated by a restricted maximum likelihood (REML) 
(Fitzmaurice et al., 2004; Hedeker & Gibbons, 2006), and the REML 
function excluding the constant term by taking the logarithm is 

 

𝑙ோாெ௅ = − 
ଵ

ଶ
log|𝐗்  𝚺ିଵ𝐗|  

                − 
ଵ

ଶ
log|𝚺| (17) 

                − 
ଵ

ଶ
൫𝐲 − 𝑿𝛃෡൯

்
𝚺ିଵ൫𝐲 − 𝐗𝛃෡൯. 

 

Modelling of covariance matrix of this study uses the method by 
Pinheiro and Bates (2000). The covariance matrix was modeled accor- 
ding to variance structure and correlation structure. The 'gls' function 
(Pinheiro et al., 2017) of the free statistical program R(3.3.2) of 'nlme' 
package has various variance and correlation structure functions as 
shown in Table 1. In Equation 14, the variance structure is related to the 
diagonal components, and the correlation structure is related to the 
off-diagonal components. A combination of these two structures can 
produce more various covariance patterns. 

Among these structures, the varPower of the variance structure and 
corAR1, corExp, corLin, and corSpher of the correlation structure are, 
respectively 

 

𝜆൫𝛅, 𝑣௜௝൯ = 𝜌ଶห𝑣௜௝ห
ଶఋ

, 

𝛾(𝑠, 𝛒) = 𝜌௦, 

𝛾(𝑠, 𝛒) = 𝑒ି௦/ఘ, (18) 

𝛾(𝑠, 𝛒) = (1 − 𝑠 𝛒⁄ )𝐈(𝑠 < 𝛒), 

𝛾(𝑠, 𝛒) = [1 − 1.5(𝑠 𝛒⁄ ) + 0.5(𝑠 𝛒⁄ )ଷ]𝐈  (𝑠 < 𝛒). 

 
𝑣௜௝ and 𝛿 in the variance structure 𝜆(⋅) are covariate and parameter, 
respectively. The 𝑠 and 𝜌 in the correlation structure are distance and 
parameter, respectively. Other functions are found in Pinheiro et al. 
(2017). 

  

Table 1. Standard varFunc and corStruct classes in package nlme (Pinheiro et al., 2017) 

Variance function  

varFixed() Fixed weights, determined by a variance covariate 

varIdent() Different variances per stratum 

varExp() Power of covariate 

varPower() Exponential of covariate 

varConstPower() Constance plus power of covariate 

varComb() Combination of variance functions 

Correlation function  

corCompSymm() Compound symmetry structure corresponding to a constant correlation 

corAR1() Autoregressive process of order 1 

corARMA() Autoregressive moving average process, with arbitrary orders for the autoregressive and moving average 
components 

corCAR1() Continuous autoregressive process (AR1) process for a continuous time covariate 

corSymm() General correlation matrix, with no additional structure 

corExp() Exponential spatial correlation 

corGauss() Gaussian spatial correlation 

corLin() Linear spatial correlation 

corRation() Rational quadratic spatial correlation 

corSpher() Spherical spatial correlation 
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3. Experiment 

An experiment of obtaining efficient estimation vectors of the hip 
joint center was conducted. The subjects were five males who were 
179 ± 2  cm in height, 73 ± 3 kg in weight and 20.6 ± .89 years of age. 
All of them did not have any history of musculoskeletal diseases and 
agreed to participate in the experiment. The experiment was conducted 
at K University gymnasium with the approval of K University Institutional 
Review Board. The subjects attached nine markers (𝑚 = 9) to the right 
thigh for the position vectors to be used in the model (Equation 9), 
and the position vectors were converted to the component of the pelvis 
coordinate system. To define the pelvic coordinate system (Wu et al., 
2002), markers were attached to both the anterior superior iliac spine 
(ASIS) and posterior superior iliac spine (PSIS) of the pelvis. To define 
the femur coordinate system (Kim, 2017), markers were attached to 
greater trochanter (GT), lateral epicondyle (LE), and medial epicondyle 
(ME). The subjects performed various functional motions (De Rosario, 
Page, Besa, & Valera, 2013; Ojeda, Martínez-Reina, & Mayo, 2014) to 
estimate the hip joint center. The motion was a combination of three 
types of hip motions that allowed flexion/extension, internal/external 
rotation, and adduction/abduction. The first motion consisted of 30 of 
flexion, neutral position, and 30 of extension, and the second motion 
was composed of 30 of abduction and neutral position. The third 
motion consisted of 30 of flexion, and circumduction to 30 of exten- 
sion and neutral position. The subjects performed three motions in 
order maintaining the upper body upright, both arms raised to the side, 
and the knee and ankle joint fixed (Figure 2). 

 

The three-dimensional position vectors of the markers were obtained 
in centimeters by using the OptiTrack Motion Capture System of 
NaturalPoint (USA). Eight Prime13 cameras were used, and sampling 
was conducted at 120 frames per second. The raw three-dimensional 
position vectors did not undergo any filtering. All coordinate systems 
were as follows: +𝑥 for anterior, +𝑦 for superior, and +𝑧 for right. 
MATLAB ver 6.1 (MathWorks) was used for data processing, and 'gls' 
function of 'nlme' package of 'R(ver 3.3.2)' was used for inferences. The 
various models in Table 1 were applied to covariance matrices, and the 
GLM assuming 𝜎ଶ𝐈ଷே was also applied. The appropriate covariance 
pattern model was selected on the basis of the likelihood ratio test, 
Akaike information criterion (AIC), and Bayesian information criterion (BIC). 
Significance level for the likelihood ratio test was 𝛼 = .1 (Fitzmaurice 
et al., 2004; Hedeker & Gibbons, 2006). 

RESULTS 

 Table 2 shows AICs and BICs of several selected models (Equation 
18) applied to the covariance matrix and the results of the likelihood 
ratio tests of the models with GLM. The selected models had relatively 
small AIC and BIC values, and all the subjects showed the same results. 
All of the covariance pattern models showed better fit compared with 
𝜎ଶ𝐈ଷே of GLM, and all subjects showed the same results (𝑝 < .0001). 
The degree of freedom (df) means the number of parameters to be 
estimated. Even though the functions of variance related to time, varExp 
and varPower, and varExp, showed better fit than GLM, it was not shown 
in the table because AIC and BIC had larger values than varPower. 
Correlation structures also underwent the same procedure, and four 
functions (corAR1, corExp, corLin, and corSpher) were selected. In accor- 
dance with AIC and BIC, the best fit model was corSpher for subjects 
1, 2, and 5, and corAR1 and corExp for subject 3. Subject 4 showed 
similar results of the four correlation structures. 

Table 3 shows each subject's estimated joint center using the esti- 
mated covariance matrix of Table 2 and its standard error (ට𝑉𝑎𝑟෢ ൫𝛃෡൯) 
of diagonal component in Equation 12). The variance structure function, 
varPower, showed a subtle difference in the estimated joint center and 
a slight reduction in standard error compared with GLM. However, in 
the case of the correlation structure function, the changes in the com- 
ponents (𝑥, 𝑦, 𝑧) of the estimated joint center were observed, and esti- 
mated standard error was large. Compared with the GLM, the com- 
ponents (𝑥, 𝑦, 𝑧) of the joint center were slightly shifted to the forward, 
upward, and medial sides. The results were the same for all the subjects 
except 𝑧 for subject 2 and 𝑦 for subject 3. In particular, in the case of 
subject 1, the change of the 𝑧  value of the joint center was remarkable 
from approximately 11 to 5.5 cm. In all the subjects, the standard error 
was increased at a similar rate to the GLM, with a maximum increase 
of 30 times (subject 1 corAR1 and corExp). 

DISCUSSION 

Since the repeatedly measured position vectors are correlated with 
each other, and the variance of the position vectors is not constant, 
the joint center should be estimated by considering these characteristics. 

Figure 2. A subject performing hip joint functional motions to estimate 
the CoR. 



132 Jinuk Kim KJSB 

Korean Journal of Sport Biomechanics 

The covariance pattern model is generated by finding an appropriate 
covariance matrix describing the correlation and heteroscedasticity of 
the error vector in the GLM of the position vector. Pinheiro and Bates 
(2000) referred to this as an extended linear model, and Hedeker and 
Gibbons (2006) explained it as an extension of the multivariate analysis 

of variance (MANOVA) that can be applied to an analysis of unbal- 
anced data. In addition, the covariance pattern model may have been 
derived from a mixed model (Cnaan et al., 997; Littell, Pendergast, & 
Natarajan, 2000; Liu, Rovine, & Molenaar, 2012; Wolfinger, 1993). If the 
markers are set as a random effect, the variance is divided into between- 

Table 2. RELM information criteria and LR tests of covariance structures 

Model df 
AIC 
BIC LR test p value 

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 

GLM 31 
104074.56 65747.00 58897.23 60743.87 86320.04  

104328.02 65987.03 59140.08 60989.05 86569.28  

varPower 58 
97508.36 62087.60 54694.76 55591.81 82814.27 

<.0001* 
97982.57 62536.69 55149.12 56050.53 83280.58 

corAR1, corExp 32 
-47410.44 -21764.07 -47073.34 -42894.86 -46738.05 

<.0001* 
-47148.80 -21516.29 -46822.66 -42641.77 -46480.78 

corLin 32 
-47411.84 -21762.19 -47071.98 -42894.52 -46740.52 

<.0001* 
-47150.21 -21514.42 -46821.29 -42641.43 -46483.25 

corSpher 32 
-47413.36 -21764.13 -47072.37 -42894.66 -46740.97 

<.0001* 
-47151.72 -21516.36 -46821.68 -42641.57 -46483.70 

Note. LR = likelihood ratio 
*All the subjects showed a significant probability of p < .0001 of the LR test with the general linear model (GLM) 

Table 3. Estimates of the center of rotation vectors of the hip joint and their standard errors (cm) 

Model 
𝛐ෝ (SE) 

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 

GLM 

𝑥 2.264 (.035) -0.332 (.045) 0.007 (.041) 0.455 (.028) -2.423 (.033) 

𝑦 -15.234 (.039) -12.774 (.046) -12.738 (.037) -15.464 (.033) -15.345 (.034) 

𝑧 11.066 (.056) 10.600 (.062) 11.244 (.046) 11.339 (.049) 11.293 (.045) 

varPower 

𝑥 2.017 (.027) -0.555 (.038) 0.397 (.034) 0.462 (.026) -2.687 (.029) 

𝑦 -14.484 (.032) -12.426 (.039) -11.791 (.031) -15.116 (.028) -14.494 (.029) 

𝑧 11.702 (.042) 10.420 (.056) 10.479 (.038) 11.628 (.037) 11.665 (.038) 

corAR1, corExp 

𝑥 2.619 (1.022) 2.921 (1.028) 1.675 (.764) 1.544 (.781) -2.834 (.732) 

𝑦 -14.939 (1.023) -12.307 (1.029) -12.731 (.763) -15.269 (.781) -14.145 (.732) 

𝑧 5.555 (1.027) 12.552 (1.031) 10.699 (.764) 10.461 (.783) 11.001 (.734) 

corLin 

𝑥 2.466 (.947) 2.871 (1.033) 1.679 (.778) 1.477 (.779) -3.015 (.679) 

𝑦 -14.624 (.948) -12.551 (1.034) -12.74 (.777) -15.217 (.779) -14.077 (.679) 

𝑧 5.438 (.953) 12.673 (1.036) 10.726 (.778) 10.583 (.782) 11.045 (.681) 

corSpher 

𝑥 2.511 (.909) 2.887 (.964) 1.679 (.766) 1.491 (.775) -2.953 (.673) 

𝑦 -14.718 (.910) -12.485 (.965) -12.739 (.766) -15.227 (.775) -14.100 (.672) 

𝑧 5.469 (.915) 12.641 (.967) 10.722 (.767) 10.558 (.778) 11.029 (.675) 

Note. SEs for 𝛐ෝ are included in parentheses 
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and within-markers variances. The combination of these two covariance 
matrices enables various covariance structures. Here, the between-
markers variance is set to '0', and only the within-markers variance has 
various structures. Thus, the covariance pattern model is more general 
than the above-mentioned approaches in that it arbitrarily parametrizes 
the covariance structure (Jennrich & Schluchter, 1986). In most cases, 
the covariance pattern model is more appropriate for balanced data 
measured at the same interval of the longitudinal design (Fitzmaurice 
et al., 2004). This study focused on the covariance structure of error 
based on the model and the related joint center estimation. 

If 𝚺௖௜ in Equation 14 is an unstructured pattern, the number of para- 
meters is 𝑛(𝑛 + 1)/2. In the image analysis, in the case of a high-speed 
camera, the number of covariance matrix parameters rapidly increases 
when the number of frame samples per second is increased or the 
operation time is long. In this study, we could not estimate the unstruc- 
tured covariance matrix due to a computer memory problem. However, 
it is expected that even if the memory problem is resolved, the para- 
meters of unstructured covariance matrix may not be estimated para- 
meters nor stable values. This is because the estimated unstructured 
pattern matrix estimation is unstable when the number of covariance 
matrix parameters is relatively large as compared with the number of 
markers (an experimental unit) (Fitzmaurice et al., 2004). Simplified 
modeling of the covariance matrix leads to a considerable improvement 
in the efficiency of estimated values (Jennrich & Schluchter, 1986). This 
study demonstrated efficiency by using a valid and simplified covariance 
structure model. 

Several covariance pattern models (Jennrich & Schluchter, 1986; 
Pinheiro & Bates, 2000; Wolfinger, 1996) are provided in different sta- 
tistical packages, and this study selected Pinheiro and Bates (2000) 
method, which can separately model the variance and the correlation 
structures. It was provided by the statistical program R, and the esti- 
mated joint center vector was obtained through various covariance 
matrix structures. The results of applying the varPower variance struc- 
ture in Table 3 showed significant differences in the likelihood ratio 
test with the GLM, but the difference in the center of rotation and the 
standard errors was not significant. However, the correlation functions, 
corExp, corLin, and corSpher, showed markedly different results from 
the GLM. The estimated joint center value showed differences, and the 
standard errors also varied significantly. As the correlated values con- 
tained less information than the independent values, the standard error 
of the mean structure parameter increased when considering the cor- 
relation in the model. However, the estimated standard error at this 
time was less biased than the independent ones, which made it easier 
to control for the type I error (Gałecki & Burzykowski, 2013). Therefore, 
the greatly increased standard error in this study is considered to be an 
appropriate value considering the characteristics of repeatedly measure- 
ments. The differences in AIC and BIC between corAR1, corExp, corLin, 
and corSpher are so small that it is difficult to determine which is 
better fit. However, we can conclude that they are all better fits than 
the conventional GLM. In addition, the correlation structure rather than 
the variance structure better describes the characteristics of the longi- 
tudinal data for estimating the joint center. 

It is common to identify the effect of response variables on changes 

in covariate when measurements are repeated. However, this study 
assumed that the position of the marker measured over time was a 
constant, as we presumed the general rigid body used in the mech- 
anical analysis of the human body. The covariance structure is relatively 
simple as compared with the model for handling general longitudinal 
data. The covariance structure aims to obtain an efficient estimate 𝛃, 
but it has important implications as a covariance structure itself. This is 
because the covariance structure completely determines how the in- 
dividual experimental units vary with deviations over time with respect 
to population mean (Schluchter, 1988). Therefore, if the appropriate 
covariance structure is determined, the STA or translational motion of 
the joints over time may be identified through this structure. 

In this study, we did not obtain the result of applying the variance 
and correlation function at the same time. This may have been due to 
overparameterization (Cnaan et al., 1997) for making various structures 
of 𝚺௜ with limited data. This may have resulted from the limits of the 
capacity needed to calculate the matrix of massive data. Finding the 
optimal estimated parameters by applying various covariance matrix 
models is of great importance. Considering the characteristics of the 
image analysis data, modeling the covariance matrix into a complex 
structure is inefficient and impossible, so a simple and appropriate 
model should be selected. The data applied to the model in this study 
were vectors. A method that can have different correlation structures 
for each component of the vector is needed, as well as an estimation 
method considering a multilevel or hierarchical structure, and this should 
be further studied. 

CONCLUSION 

This study aimed to make appropriate inferences of the hip joint 
center through the GLM, considering the correlation and heterosced- 
asticity of the marker position vectors continuously measured from the 
high-speed camera images of the functional motion for estimating the 
hip center, and the following conclusions were obtained. The covariance 
pattern model of the GLM error considering the correlation and hetero- 
scedasticity was a better fit than the GLM assuming classical indepen- 
dence and homoscedasticity. In addition, the correlation structure rather 
than the variance structure better explained the characteristics of the 
longitudinal data for estimating the joint center. 
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