• Title/Summary/Keyword: Coulomb의 마찰

Search Result 149, Processing Time 0.023 seconds

Equivalent Friction Angle and Cohesion of the Generalized Hoek-Brown Failure Criterion in terms of Stress Invariants (응력불변량으로 표현한 일반화된 Hoek-Brown 파괴조건식의 등가 마찰각 및 점착력)

  • Lee, Youn-Kyou;Choi, Byung-Hee
    • Tunnel and Underground Space
    • /
    • v.22 no.6
    • /
    • pp.462-470
    • /
    • 2012
  • Implementing the generalized Hoek-Brown failure criterion in the framework of the Mohr-Coulomb criterion requires the calculation of the equivalent friction angle and cohesion. In the conventional method based on the Balmer (1952)'s theory, the tangential instantaneous friction angle and cohesion are expressed in terms of the minimum principal stress ${\sigma}_3$, which does not provide the information about the dependency of the equivalent parameters on the hydrostatic pressure and the stress path. In this study, this defect of the conventional method has been overcome by representing the equivalent parameters in terms of stress invariants. Through the example implementation of the new method, the influence of the magnitude of the hydrostatic pressure and the Lode angle on the tangential instantaneous friction angle and cohesion is investigated. It turns out that the tangential instantaneous friction angle is maximum when the stress condition is triaxial extension, while the tangential cohesion is maximum when the stress condition is triaxial compression. The dependency of the equivalent Mohr-Coulomb strength parameters on the hydrostatic pressure and the Lode angle tends to be more substantial for the favorable rockmass of larger GSI value.

Frictional Contact Analysis of the compression-Induced Crack Surfaces using the Finite element Method (유한요소법을 이용한 압축력으로 인한 균열 표면의 마찰접촉 해석)

  • 김방원;이기수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.517-522
    • /
    • 2000
  • When a body including a crack inside is subjected to the compressive forces, the crack is closed and sliding occurs on the crack surfaces. In this work, a subsurface crack subjected to a static or moving compressive load is analyzed with the finite element method considering friction on the crack surface. The friction on the crack surface is assumed to follow the Coulomb friction law. A numerical method based on the finite element method and iterative method is applied in this work. And the result is compared with the frictional contact of crack by ANSYS using contact 12 element. The numerical results of two methods are compared with the wellknown analytical solutions, and the accuracy of iterative method is checked..

  • PDF

Impulse Response Analysis of an Amplitude Proportional Friction Damper System (변위비례식 마찰댐퍼 시스템의 임펄스 가진 응답해석)

  • 최명진;박동훈
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.5
    • /
    • pp.377-384
    • /
    • 2004
  • An Amplitude Proportional Friction Damper (APFD), in which the friction force is proportional to the system displacement, has been introduced and mathematically modeled. To understand the damping characteristics of APFD, analytical solutions for the impulse response has been derivedand compared to the viscous damper. It is found that APFD system has very similar damping characteristics to viscous damper even though it is a friction damper. APFD may be used as a cost-effective substitution for the viscous damper and could also be used to improve the simple friction or Coulomb dampersince APFD works with no stick-slip and always returns to original position when external disturbance is disappeared.

Dynamic Analysis of the Small Reciprocating Compressors Considering Viscous Frictional Force of a Piston (피스톤의 점성 마찰력을 고려한 소형 왕복동 압축기의 동적 해석)

  • 김태종
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.11
    • /
    • pp.904-913
    • /
    • 2002
  • In this study, a dynamic analysis of the reciprocating compression mechanism considering viscous friction force of a piston used in small refrigeration compressors is performed. The length of cylinder in this class of compressors is shortening to diminish the frictional losses of the piston-cylinder system. So, the contacting length between piston and cylinder liner is in variable with the rotating crank angle around the BDC of the reciprocating piston. In the problem formulation of the compression mechanism dynamics, the change in bearing length of the piston and all corresponding viscous forces and moments are considered in order to determine the trajectories of piston and crankshaft. The piston orbits for viscous friction model and Coulomb friction model were used to compare the effect of the friction forces of piston on the dynamic trajectories of piston. To investigate the effect of friction force acting on the piston for the dynamic characteristics of crankshaft, comparison of the crankshaft loci is given in both viscous model and Coulomb model. Results show that the viscous friction force of piston must be considered in calculating for the accurate dynamic characteristics of the reciprocating compression mechanism.

Comparison between Direct and Indirect Implementation of Generalized Hoek and Brown Failure Criterion in Numerical Analysis Procedure (범용 Boek-Brown 파괴기준식의 직접 및 간접적 적용에 관한 수치해석과정의 비교 분석)

  • Deb Debasis;Choi Sung O.
    • Tunnel and Underground Space
    • /
    • v.15 no.3 s.56
    • /
    • pp.228-235
    • /
    • 2005
  • Friction angle and cohesion of rock masses can be estimated from Hoek and Brown failure criterion and then plastic corrections can be applied using Mohr-Coulomb yield function. This study finds that this estimation procedure would not be appropriate for weak rock masses and for cases where low confining stress is expected to develop. A procedure is outlined in this paper for estimating plastic corrections directly from Hoek and Brown material model. Comparative study shows that direct procedure would simulate non-linear failure surface better than indirect procedure especially in the low confining stress regime.

A Study on Shear Characteristics of a Rock Discontinuity under Various Thermal, Hydraulic and Mechanical Conditions (다양한 열-수리-역학적 조건 하에서 불연속면 전단 거동 특성에 관한 실험적 연구)

  • Kim, Taehyun;Jeon, Seokwon
    • Tunnel and Underground Space
    • /
    • v.26 no.2
    • /
    • pp.68-86
    • /
    • 2016
  • Understanding the frictional properties of rock discontinuities is crucial to ensure the stability of underground structures. In particular, the frictional behavior at depth depends on the complex interaction among mechanical, hydraulic, thermal and chemical characteristics and their coupled effects. In this study, a series of shear tests were carried out in a triaxial compression chamber to investigate the shearing behavior of saw-cut granite surface and rough shear surface of synthetic rocks. The test results were analyzed using Coulomb's shear strength criterion. The frictional behavior of saw-cut granite surface showed little variation at different confining, water pressures and temperature conditions, however in case of synthetic rocks, the frictional behavior showed different trend depending on normal stress level. In addition, the variation of stiffness and dilation at different testing conditions were analyzed, and the stiffness and dilation showed little variation at different water pressures and temperature conditions.

Passive Earth Pressure Transition Behind Retaining Walls (옹벽의 변위에 따른 정지토압에서 수동토압까지의 변화)

  • 김홍택
    • Geotechnical Engineering
    • /
    • v.3 no.2
    • /
    • pp.55-70
    • /
    • 1987
  • An analytical solution procedure is described to estimate the developed passive lateral earth Pressures behind a vertical rigid retaintng wall rotating about its toe into a mass of cohesionless soil. Various stases of wall rotation, starting from an at-rest state to an initial Passive state to a full Passive state, are considered in the analysis. Condition of failure defined by a modified Mohr-coulomb criterion, together with equilibrium conditions, is used to obtain the necessary equations for the solution. Using methods of stress characteristics and numerical finite difference, a complete solution within and on the boundaries of the entire solution domain is made possible. The variations of the soil shear strength and the wall friction at various depths and stages of wall rotation are also taken into account in the analysis. The results predicted by the developed method of analysis are compared with those obtained from the experimental model tests on loose and dense sand. The comparisons show good agreements at various stages of retaining wall rotation Fin- ally, results of analytical parametric study are presented to demonstrate the effects of wall fric- tion on the resultant thrust and distribution of developed lateral earth pressures.

  • PDF

Neuro-controller design for the line of sight stabilization system containing nonlinear friction (비선형 마찰이 존재하는 조준경 안정화 시스템의 신경망 제어기 설계)

  • Jang, Jun-Oh;Jeon, Byung-Gyoon;Jeon, Gi-Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.2
    • /
    • pp.139-148
    • /
    • 1997
  • 본 논문에서는 비선형 마찰이 존재하는 조준경 안정화 시스템에 대해서 마찰력 보상과 성능개선을 위한 신경망제어기의 설계방법을 제시한다. 제안한 신경망제어기는 비례, 적분, 진상(PI/LEAD) 제어기와 신경회로망과의 병렬로 구성되며, 제어 목적은 비선형 마찰과 외란이 존재하여도 안정거울의 각속도 추적성능과 안정화 성능의 향상에 있다. 신경회로망의 입력으로 안정거울의 각속도 추적오차와 추적오차의 적분, 제어입력이 필터를 통과한 신호가 사용되며, 신경호로망은 간접학습구조에 의해 학습된다. 조준경 시스템의 비선형 마찰력인 쿨롱마찰력의 크기가 외부환경에 따라 변하는 경우와 시스템으로 외란이 인가되는 경우에 대하여도 제안한 병렬제어기는 기존의 PI/LEAD 제어기보다 추적과 안정화 성능면에서 우수함을 컴퓨터 모의 실험으로 확인한다.

  • PDF

Computation of Passive Earth Pressure Coefficient considering Logarithmic Spiral Arc (대수나선 파괴면을 고려한 수동토압계수의 계산)

  • Lee, Seung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.425-433
    • /
    • 2019
  • In this study, a simple method of calculating the passive earth pressure coefficient, which is based on the limit equilibrium method, was proposed and the calculated earth pressure coefficients were compared with those of several researchers. The angle of the linear failure surface, which is combined with the logarithmic spiral arc, to the failure surfaces of the passive zone was derived and the whole passive thrust acting on the Rankine passive zone was considered in the proposed method instead of considering the horizontal component of passive thrust. The variations of the passive earth pressure coefficients of the proposed method showed the same tendency as that of the Coulomb's passive earth pressure coefficients with an inclined angle of backfill and internal friction angle. The magnitude of passive earth pressure coefficients of the proposed method were smaller than those of the Coulomb in almost all cases. A comparison of the passive earth pressure coefficients with the wall friction angle revealed the passive earth pressure coefficients of the proposed method to be smaller than those of the Coulomb and the differences between the two values increased with increasing internal friction angle and wall friction angle. A comparison of the passive earth pressure coefficients of the proposed method with those of the existing researchers for the considered internal friction angles of $25^{\circ}$, $30^{\circ}$, $35^{\circ}$, and $40^{\circ}$ and three wall friction angles revealed the maximum percentage differences for the Kerisel and Absi method, Soubra method, Lancellotta method, $Ant\tilde{a}o$ et al. method, Kame method, and Reddy et al. method to be 4.8%, 3.8%, 31.1%, 4.0%, 20.6%, and 12.8% respectively. The passive earth pressure coefficient and existing pressures were similar in all cases.

Analysis of Influencing Factors for Calculation of the Coulomb Earth Pressure of Cantilever Retaining Wall with a Short Heel (뒷굽 길이가 짧은 캔틸레버 옹벽의 Coulomb 토압 산정에 대한 영향 인자 분석)

  • Yoo, Kun-Sun
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.11
    • /
    • pp.59-72
    • /
    • 2017
  • In this study, the calculation method of the active earth pressure acting on the imaginary vertical plane at the end of the heel of the wall is proposed. For cantilever retaining wall, a change of shear zone behind the wall affects the earth pressure in the vertical plane at the end of heel of the wall depending on wall friction and angle of ground slope. It is very complicated to calculate the earth pressure by a limit equilibrium method (LEM) which considers angles of failure planes varying according to the heel length of the wall. So, the limit analysis method (LAM) is used for calculation of earth pressure in this study. Using the LAM, the earth pressures considering the actual slope angles of failure plane are calculated accurately, and then horizontal and vertical earth pressures are obtained from them respectively. This study results show that by decreasing the relative length of the heel, the slope angle of inward failure plane becomes larger than theoretical slope angle but the slope angle of outward failure plane does not change. And also the friction angle on the vertical plane at the end of the heel of the wall is between the ground slope angle and the wall friction angle, thereafter the active earth pressure decreases. Finally, the Coulomb earth pressure can be easily calculated from the relationship between friction angle (the ratio of vertical earth pressure to horizontal earth pressure) and relative length of the heel (the ratio of heel length to wall height).