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Neuro—Controller Design for the Line of Sight
Stabilization System Containing Nonlinear Friction
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I . Introduction

Frictional forces in mechanical systems can be divided
into two categories, linear and nonlinear friction accor-
ding to relationship with velocity. Viscous friction re-
presents a retarding force that is proportional to the
velocity. However, it does not give much trouble to the
design of a control system mainly due to its linear
relationship with velocity. It rather makes contribution to
improve system stability with desirable property such as
break. On the other hand, the coulomb friction is
nonlinear friction that has a constant amplitude with
respect to the change in velocity, but the sign of the
coulomb frictional force changes with the reversal of the
direction of velocity. So, the coulomb friction, which is
always present to some degree in mechanical systems,
causes difficulties in the design and analysis of a control
system. Therefore, the performance of a real control
system cannot be accurately predicted by simulation or
analysis of the system without considering the nonlinear
friction. Its presence is often responsible for the inability
of the system to keep low values of the steady state
error.

The linearization method, which is often used as a
design method of a nonlinear control system, gives rise
to serious problems to a position control system with
nonlinear friction because the sign of the coulomb
frictional force changes abruptly in the vicinity of zero
velocity. Hence, a practical method for canceling the
friction in the position control system would entail
on-line estimation of the friction present in the system
and addition of the estimated value to the controller
output. But, the degradation of the system may occur
when the value of friction is not estimated prof)erly.

To overcome this problem, an adaptive friction com-
pensation method has been studied. The use of recursive
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least square algorithm for estimation of the parameters in
a nonlinear friction model was considered by Canudas et
al.[1]. Friedland and Park[2] presented another adaptive
friction compensation scheme which was based upon a
Lyapunov-like argument involving the position error.
Also, many researches on friction compensation have
been carried out and reported in a survey paper[3].
However, these methods are based on the characteristics
of the nonlinearity and the knowledge on some of the
parameters. Friction is a natural phenomenon that is
quite hard to model and not yet completely understood.
Recently, advances in the area of artificial neural
networks have provided the potential for new approaches
to the control of nonlinear systems through leamning
process. In robotics, Kawato et al.[4] used a hierarchical
neural network model as add-on component to the
conventional linear controller in order to control the
movement of a robot. Lewis et al.[5] proposed multilayer
neural-net robot controller with guaranteed tracking
performance. Lightbody et al.[6] proposed a direct model
reference adaptive control structure using a linear
controller and a neural network in parallel in a chemical
process and a missile control system. However, nonlinear
friction compensation method using a neural network and
a linear controller has not been studied in servo systems.
In this paper, we propose a neural network control
method for compensation of the friction in a line of sight
stabilization system(LSS) containing nonlinear friction.
The proposed neuro-controller consists of a PI/LEAD
controller and a neural network controller in parallel. The
objective of the neuro—controller is to compensate the
nonlinear friction and improve the tracking and sta—
bilization performance under disturbance. Tracking error
and its integral are used as inputs to the neural network
for control(NNC) in order to sense tracking error and to
compensate the frictional force, and a filtered control
input is also used as an additional input to the NNC to
reduce the overshoot of the output response. We train
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the NNC by the indirect learning control schemel7]. We
compare the tracking and stabilization performance of the
proposed neuro—controller with that of the PI/LEAD
controller, when the magnitude of friction is constant and
changes with environmental factors. Also, we investigate
the stabilization performance of the
random, sinusoidal and constant ~disturbances through
computer simulations.

We describe the line of sight stabilization system in
the next section. In Section I, we present the neural
network control method for friction compensation and in
Section IV we analyze the tracking error dynamics. We
compare the performance of the proposed neuro- con-
troller with that of the conventional PI/LEAD controller
in Section V. Finally, Section VI contains conclusions
and further work.

H. Line of sight stabilization system

The line of sight stabilization system(LSS) is a ser-—
vomechanism designed to maintain the angular orientation
of an object in inertial space against disturbance. Besides
isolating the line of sight (LLOS) of a sensor from
disturbances, the stabilization system is also required to
slew the LOS in faithful response to command inputs
from either a human or an automatic tracker and/or to
provide measurements of the LOS orientation or rate to
an external system for the purpose of weapon pointing.
The LSS is composed of a gyro for integrating the error
signal, a compensator for generating control signals, and
a dc motor for driving the gimbal with a stabilized
mirror.

The LSS is functionally divided into two subsystems;
the LOS stabilization and tracking subsystem. The
stabilization function is as follows: If disturbances from a
maneuvering vehicle are transmitted to the gimbal via
the vehicle, the gyro which is attached to the gimbal
senses rotation of the gimbal and the gyro output signal
is conditioned and amplified by the servoelectronics.
Then, the PI/LEAD controller attempts to create a motor
torque equal to and opposite direction to any disturbance
torque placed on the gimbal. For the tracking function, a
human operator senses the position error between the
LOS and the target, and the command signal generated
by the operator’s handle goes into the gyro to track the
maneuvering target. The gyro generates an electrical
signal which is proportional to angular momentum, and
this signal is transmitted to the compensator via a filter
and a demodulator. Finally, the compensator produces a
signal to control the LOS movement. Fig. 1 shows the
simplified block diagram of the LSS, where .., is the

command signal and w,, is the angular velocity of the

mirror. Two low pass filters (LPF) with cut off fre-
quencies 200Hz and 83 Hz for noise rejection are placed
in front of the controller and the motor, respectively.

Fig. 2 shows the block diagram of the motor and
gimbal system, where a brushless dc motor driven by an
amplifier with current feedback is used. At the ope-
rational frequency the dc motor/actuator is approximated

system under -
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Fig. 1. Block diagram of the line of sight sta-
bilization system.,

Fig. 2. Block diagram of the motor and gimbal
system.

as the following linear relationship;
T=K, K, U, (D

K, is
is the torque

where, T is the torque developed by the motor,
the gain of the cuwrent amplifier, K,,
constant and U; is the input to the motor and gimbal

system. The kinematic equations of general servosystems
are reported in [8] and the dynamics of the LSS are
explained in [9]. The transfer function of the gimbal
system with a stabilized mirror neglecting the coulomb
friction can be expressed by

Ggim ()= ﬁ (2)

where Jis the moment of inertia and B is the viscous
friction. The parameters of the motor are from the data
sheet of the manufacturer and those of the gimbal
system have been obtained by experimental mea-
surements and calculations and they are given in Table
1. When the LSS mounted on a vehicle moves on
off-load, the disturbance caused by mechanical vibration
is fed to the gimbal system and affects the viscous and
the coulomb friction. The coulomb friction is modeled as
constant times the sign of velocity as shown in Fig. 2.
For the LSS, if the angular velocity w, of the mirror
is larger than the disturbance w,, the sign of the
coulomb friction is positive, otherwise negative.

The gyro mounted directly on gimbal system serves to
measure the LOS rate. The transfer function of the rate
integrating gyro used in the LSS is obtained from the
curve fitting to the gyro structure and data provided by
the manufacturer as follows;

, 9.45 x10" 3
s(s* +2.5x10°% +5x10% +5.6 x 10°)

G (s)=

The controller should be designed to minimize tracking
error and to maintain the LOS
disturbances. The controller receives information from the

orientation under
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Table 1. The parameters of the motor and gimbal

system.

Parameter K, K, J B
Nominal value | 05 9.25 0.1477 0.5685
Unit A/V | IN-OZ/A | IN-OZ-SEC? | IN-0Z-SEC
=
3
=
B
=
5
E
2 | |
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Time [msec)

(a)

Angular Velocity [deg/sec]
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(b)
Fig. 3. Angular velocity of the LOS mirror by the
PI/LEAD controller, (a) without coulomb
friction and (b) with coulomb friction.

gyro and calculates control signal. The desired speci-
fications of the LSS are to increase the bandwidth of the
closed loop system and to decrease the steady state error
in the unit step response. In the LSS a PI/LEAD type
controller is implemented as a main controller because
the LEAD compensator increases the bandwidth and the
PI controller decreases the steady state error. The
transfer function of the LEAD compensator, G,(s), is

obtained by the Bode plot as follows:

_ st+8.2 3
Gi()=~<Ta317 @

The LEAD compensator provides a phase margin of 60°

at the gain crossover frequency 30Hz. The integral gain
and the proportional gain are adjusted by the Zie-
gler-Nichols method[10]. After some experimental adju-
stment of the PI controller by trial and error, finally the
transfer function of the PI/LEAD controller, G.(s), is

determined as:

_ 15.4 (s+6.28)(s+8.2)
Gl ="+ 1317) ®)

Fig. 3 shows the tracking performance of the command
signal of the LSS without and with the coulomb friction.

We see in Fig. 3(a) that the overshoot of angular
velocity is about 50 percent when we neglect the
coulomb friction. Fig. 3(b) shows the angular velocity of
the mirror when there exists coulomb friction in the
gimbal system. The magnitude 0.2 of the coulomb
friction is added. We conjecture that the torque developed
by the motor is not properly applied to the gimbal
system due to the frictional force. Also, Fig. 3(b) shows
chattering phenomena in the vicinity of zero velocity
while maintaining zero angular velocity required by the
command signal.

IM. Neuro—controller design for the line of sight
stabilization system
In this section a newly developed neural network
control method for friction compensation is presented.
Fig. 4 shows the proposed neuro-controller which has
the conventional PI/LEAD controller for system
stabilization and the NNC for friction compensation in
parallel. Control input U to the plant (the motor and
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Fig. 4. Structure and learning scheme of the neuro
-control system.

gimbal system with LPF) is defined as:
U= U, 1 + U2 (6)

where U, is the output of the PI/LEAD controller and
U, is the output of the NNC. The objective of the

neural network for identification(NNI) is to provide
estimates of the inverse Jacobian of the plant for a use
in the training of the NNC. The NNC and the NNI are
three layer feedforward neural networks with the error
back-propagation learning algorithm[11].

The angular velocity of the mirror, g, is an im-
portant signal not only as the output of the motor-
gimbal system but as a training signal of the NNI and
an input signal to the NNC. However, the angular
velocity is not accessible because of the specific
structure of the rate integrating gyro of the LSS.
Therefore, it is estimated from the output of the filter,
LPFI as follows:

Gtos (B) = @ e B) — & ) (N

where w, and e are the estimates of w, and e,

respectively. From the transfer functions of the gyro (3)
and the low pass filter LPFI,

Gi(s) =1 (8)



a difference equation on e(k) could be obtained by the
Tustin’s method. Unfortunately, the gyro and filter
system transformed by the Tustin’s method 1s
non-minimum phase. Therefore, to avoid divergence we
reduce the model of the gyro and filter system to a
simple integrator neglecting far left poles of the gyro and
filter system. The Tustin's transformation of the
integrator with a gain K=1718 gives the following

difference equation on e(#) :

B — 2 _ 1) = b
k) = TK[V(k) V(k~1)] - e(k~1) (9)
where the sampling time 77=0.001 second is executed.

The three layer neural network for the NNI with the
number of nodes from the input layer 4-10-1, which is
shown in Fig. 5, has a net output given by

o4 . X
wlos 2 [wml Uz([glyllm * xl[)] (10)

with ¢’ ( - ), the hyperbolic tangent function, v, the

first to second layer interconnection weights, u',;, the
second to third layer interconnection weights, and the
implies NNI. The inputs to the NNI, x'=
LR, k1), @uk~1), @u(k—2)]7,
are composed of the control input and the plant output.
The performance index for training the NNI is

superscript ¢

[, xéxéx,’;] T~

EW=% ép'=41 an(B~6u®* (D
where ¢;(k) is defined as the error between the esti-
mated plant output and the output of the NNI. The
second to third layer weights of the NNI,
adjusted by back propagating the estimated error by the
following equation:

W' are

= w'm (k) +7 %(ﬂ%_ e (k) (12)

= WD+ 7+ 0 () R - SR

where 7 is the step size. Similarly, the first to second
layer weights of the NNI, v%,, are adjusted by following
equation:
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Fig. 5. Structure of the neural network for identi
fication(NND).

RO - AiSet - ANAEISS =24 M3 A M2S 1997 4
; o . dELk)
Ulm(k—%l) - Ulm(k) 7 avlm(k)
; 8 W (k) N
= U/m(k)+77 * m ez(k) (13)
, 4 ,
=Bty 2k - o (Zzlv’m(k) < xi(k))
wa(k) - € (k)

where ¢'(-) is the time derivative of the o'( - ).

Since the structure of the NNC are the same as that
of the NNI, the output of the NNC with the number of
nodes from the input layer 4-10-1 is given by

10 )
Uy = 2 [,

=1

Lo (v 1)) (14)

where v9; is the first to second layer connection weights,

w5, the second to third layer connection weights,

6= [af, x5, x5, 21T =1 V(B), el B), Sel k), F(UER)]T the in-
puts to the NNC.

Friction can be rarely determined a priori with an
accuracy required for its canccllation and cannot be
readily measured or controlled. Therefore, tracking error
e, command angular’ velocity minus angular velocity of
the mirror, and its integral are fed back to the NNC in
order to sense tracking error caused by the frictional
force. The control input passing through a filter F(z),
which is explained later, is also used as an additional
input to the NNC to reduce the overshoot of the
response. Since the NNC can not directly learn the
nature of friction, the connection weights of the NNC in
Fig. 4 are adjusted by an indirect learmning control
scheme(6]. The performance index for training the NNC
is

E(R=7 e(B*=FlomR~ au®] (5

where e.(k) is defined as the estimated tracking error
between the command signal and the output of the NNL
The indirect leamning control scheme of the NNC is as
follows: The motor and gimbal dynamics are identified
by the NNI through a learning process, during which
connection weights are adjusted in a direction to
minimize the sum of squared errors between the desired
On the
other hand, the second to third layer weights of the
NNC,

output, @, and neural network output, @ .

w5, , are adjusted by back propagation of the

estimated tracking error through the NNI by the
following equation:
. ey BER
wii(k+1) = w5 (k) —2 ERN)
. L AUR) | dUR | 9 (R
=wH(R +7 (awil(k) aw,l(k)) 300H elh
4
=wiy(k+7- df(hzl v5(k) x5 (R)) El[vllm(k) .
. 4 . ~
o’(:;'l Uk - 2 (R) - wia(B)] - e (R
(16)
OUR) o dUNR
where the facts that w0’ (k) =0 and dw (B
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a“( hz:]l 05,k - x5(k) ) from (14) are utilized.

The first to second layer weights of the NNC, v%;
are similarly adjusted by following equation:
dE(%)
vl B

FULE) 3 @i(h)
a5k UK

= VD7 2D L, VD) xR - W (B)
ﬁl[v’m(k) . d.'(g:l Vil B - xKR)) - (B e (B
am

v5:(k+1) = 5% —7n-

=v5%(k+7n- e k)

The large overshoot and subsequent oscillations in Fig
3(a) are due to the excessive amount of the control input
generated by the PI/LEAD controller at the instant of
reference input change. In the PI/LEAD control system,
the excessive amount of the control input is inevitable
because of the bandwidth of the closed loop system. But
large overshoot would be reduced if the output of the
NNC has the opposite sign to that of the PI/LEAD
controller output. The following filter output is used as
an additional input to the NNC to reduce the overshoot
of the control system:

F(2)=(1—-azh (18)

where z 7! is a delay operator. When the value of « is 1,
the difference of control input is fed back to the NNC
via the filter. Computer simulations show that as the
increases from 1 the output of the NNC
increases in magnitude but with opposite sign to the
output of the PI/LEAD controller. Thus, we select a
proper value of a to reduce the magnitude of the
original control input generated by the PI/LEAD
controller. Hence, the control input by the NNC combined
with the control input by the PI/LEAD controller makes
the mirror eventually track the command signal with
smaller overshoots. Practically, we select the value of «
by trial and error.

value of «

IV. Analysis on error dynamics of the neuro—control
system
In this section, the system error dynamics are analyzed
and a bound on the tracking error is derived. The
dynamics of the plant (motor and gimbal system) may
be expressed from (1) and (2) by

]C;)IOS+B(I)105+h(‘ )+CUd= T (19)
where #(-) 1s a nonlinear function of the angular
velocity, wy is bounded unknown disturbance and T is

control input torque from the motor. It is assumed that

lwg 1< 7, with r ;, known positive constant value. Given
the command signal w.., the tracking error is e=
Wema— Wis . Differentiating tracking error and using (19),
the dynamics of the plant may be written in terms of

the tracking error as:

Je=—Be—T+f+aw, (20)

where the nonlinear plant function f 1s

f=T] Oomg + Bognat+ h(+) @n
Define now a control input torque as:
T=f+K, e (22)

where the feedback controller (gyro and PI/LEAD) gain,
K;, and an estimate of f, 7, will be provided later by

some means not yet disclosed. Then, the closed loop
system becomes

Je=—(K+Be+ 7+ w, (23)
where the functional estimation error f is given by

f=r—7 (24)

(23) is an error system wherein the tracking error is
driven by the functional estimation error. In the re-
mainder of the paper we shall use (23) to focus on
selecting a neural network training algorithm that the
neural network approximates the nonlinear plant function
f.

A three layer neural network(NN), which is similar as
shown in Fig. 5 has a net output given by

N, N,
y:i;l[wn ’U(hz::lvhi'xh)] (25)

with new notations; o( - ) the activation function, v,;,
the first to second layer interconnection weights, w;; the
Ny, the

number of the first layer neuron, and N,, the number of

second to third layer interconnection weights,

the second laver neuron. The NN equation may be
conveniently expressed in vector format by defining

T T
x=lx0, 21, * - ',xN,] , w =[w1,1,w1,2, "wl,Nz]

, and matrix format by defining ¥V "=[v,,]. Then,
y=WTe (V7T . (26)

A general function f can be modeled by a neural
network as:

f=WTa(VTx)+e 27

where Wand V are constant ideal weights of the current
W and V

constant ¢ y, and &

so that ¢ is bounded by a known
is reconstruction error due to the

weights

neural network structure. For practical situation, we
assume that the ideal weights are bounded by known
positive values so that [|[WI<K Wy, VIV,

[l -l is a matrix norm. Define the weight deviation or
weight estimation error as:

W=w-W, V=V~ 7, 28)

and the second layer output error for a given x as:

where

o=0—6=oV x)=o( VT . (29)
The Taylor series expansion of the second layer output
for a given x may be written as:

A ViD= V)+a( VT VT x+0( VT (30)



144

with o( 2)=do(2)/dal ,_+
high order terms. Denoting that

and O(-+) denoting sum of

o= o( V7x), we have

g= i{( PV Tx+0( V) (31
= o V+0( V%)

Now, define the neural network functional estimate of
(27) by

=W a(VTx (32)

with 7, W the current (estimated) values of the ideal
weights V, Was provided by the {raining algorithms
subsequently to be discussed. Ignoring the actuator
dynamics, select a control input torque using (22) and
(32) as:

T=K;e+ Wi V7x) (33)

Using (27) and (33), the closed loop error dynamics (23)
become

Jé= —(KABle+ W' Vix)~ Wio V7x)
+ e “‘|’(1)d '

Adding and subtracting W7 & yields
Je=—(K+Bet WT 6+W” 6+ ¢ +tw,. (35)
Adding and subtracting again W7 5 yields

Je= —(K,+Be+ Wl o+ Wi o+ W'l s
. (36
+e+wd

Using the Taylor series approximation for ¢, the closed
loop error system becomes

Je=—(K+Bet+t W 6+ WT 6V x+d (37
where the disturbance terms d is

d WT.&VTxﬂ—WTO(VTx)-%-eﬂ—wd. (38)

§t+e twy

The higher order terms in the Taylor series, §, is
[61 < 6. 1t is
important to note that the neural network reconstruction
error €, the plant disturbance w,, and the higher—-order

bounded by positive constant § y , ie,

terms 6 in the Taylor series expansion of f all have
exactly the same influence as disturbances in the error
system.

For the neural network training algorithm to improve
the tracking performance of the closed loop system it is
required to demonstrate that tracking error e is suitably
small. A bound on the tracking error is derived by the
following theorem.

Theorem 1 : Let the command signal be bounded. Take
the control input for (19) as (33). Let NNC weight
training algorithmbe provided by (16) and (17). Then, the
tracking error e evolves within a practical bound

5N+EN+Z'4

K+ B (39

le] <

Proof : Define the Lyapunov function candidate for the

MO AiSst - ANABISSE =2A RI3 A M2z 19974

error dynamics (23)

L= ]e2+%( WtV v (40)

1
2
where #1 ) is trace. Differentiating yields

L=Jéer g JE+( W W+ VT ) @)
whence substitution from(37) yields

L= ‘(Kfl—B)eZ-I—% JE+WT (WHse) (g
+ty VT ( V4x e wr 3)+ed.

Since W=-— W with W constant (and similarly for V)
and if the dynamics of the plantare identified by the

NNIL, then &, =e. We can derive W =—6e¢ and V
=—x (67 W e from the training rules (16) and (17).
The training rules and the assumption |/ |=0 gives

L=—(K/+B)e’+ed (43)
and

LS *(Kf+B)|9|2+|€KaN+EN+Td): (44)
~le l[{K;+B)lel— (8 y+ eyt Jl

Thus, L is negative as long as the term in brace is
positive, which implies

3N+EN+Z'4

le > K, 7B

(45)

According to the standard Lyapunov theorem, the trac—
king error evolves within the right hand side of (45). W

The neural network reconstruction error ¢, the
bounded disturbance w,;, and the higher order Taylor
series terms §increase the bound onle|.
small tracking error bound may be achieved by reducing
8 by training the NNC and reconstruction error € by
properly selecting the structure of the NNC. Notice that
since the conventional controller gain K, is determined

according to the design of the PI/LEAD controller, K,

can not be increased arbitrarily. However, large K, may

However, a

decrease the tracking error bound as long as the
PI/LEAD controller maintains the stability of the control
system.

V. Performance analysis of the proposed control
method

In this section, the performance of the proposed control
system under Gaussian, sinusoidal and constant dis-
turbances are analyzed. Also, effects of a coulomb
friction varying with time and a disturbance measured at
a field test are investigated through computer si-
mulations. All the simulations in this analysis have been
executed under digital environments. Continuous transfer
functions were converted to the equivalent discrete
transfer functions by the Tustin’'s method with sampling
time T=0.001 second. The response of the discrete
system was very close to that of the analog system
without the digital neural network controller.
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When a vehicle with the LSS mounted on it moves on
bad environment such as off-load, the disturbance caused
by the mechanical vibration is transmitted to the gimbal
system. Fig 6(a) shows the angular velocity of the
mirror controlled by the PI/LEAD controller alone when
a random disturbance gets into the gimbal system. The
magnitude of the random disturbance is assumed to be
uniformly distributed between 05 and -0.5 deg/sec with
variance 0.083. The NNC was trained as described in the
previous section in order to minimize the tracking error.
The overshoot of the angular velocity of the mirror with
the neuro—controller is decreased when a« varies from 1
to 5. At the value of 5, the angular velocity of the
mirror is shown in Fig. 6(b) and the control inputs
generated by the neuro—controller is shown in Fig. 7. At
the instant that the command signal changes from -1 to
1 deg/sec, we see that the sign of control input signal @
is opposite to that of signal . Therefore, it is
presumable that the output of the NNC counteracts the
output of the PI/LEAD controller. Whereas the control
input signal @ generated by the PI/LEAD of the neu-
ro-controller does not properly compensate the frictional
force, the sum of control input signals @ and @ seems
to compensate the frictional force properly.

2
Tg L5 |
® 1
=]
= 0.5
T
z -0.5
5o
-5 f
= |
-2
0 500 1000 1500
Time [msec]
(a)
2
Eg 1.5
B 1
=
> 0.5
T o
2 -0.5
s -l
_22‘*-1.5 L
-2 | |
0 500 1000 1500
Time [msec)
(b)

Fig. 6. Angular velocity of the mirror with coulomb
friction and random disturbance, (a) by the
PI/LEAD controller and (b) by the neuro-
controller.

Generalization capability is also tested with a different
command signal as shown in Fig. 8 We see that the
tracking performance of the neuro-controller is superior
to that of the PI/LEAD controller. Also, we investigate
the angular velocity of the mirror when the magnitude of
the coulomb friction changes with time as follows.

Control Input

0 500 1000 1500
Time [msec]

(a)

Control [nput

0 500 1000 1500
Time [msec)

(b)

Fig. 7. Control inputs (a) by the NNC and (b) by
the PI/LEAD of the neuro—controller.

0.15, t < 0.7
£ =025, 0.7 =<t<Cl1.1 (46)
0.2, t = 1.1 (sec)
The response in Fig. 9(b) illustrates the adaptation

capability of the neuro-controller for friction compen-—
sation, while the response in Fig. 9(a) shows a poor
tracking performance. When the magnitude of friction
changes with time, the mirror of the LSS controlled by
the neuro-controller tracks fast to the command signal
even if the tracking error is large with the PI/LEAD
controller.

On the zero velocity command signal, the LOS mirror
should maintain the orientation under any disturbance.
The result in Fig. 10 shows the stabilization performance
with a sinusoidal disturbance with magnitude of ldeg/sec
and frequency of SHz and a coulomb friction with the
magnitude 0.2. When the polarity of sinusoidal wave is
reversal, all the responses in Fig. 10 show high peak
overshoot because the sign of the coulomb friction
changes with the polarity of the sinusoidal wave. But,
the trajectory (ii) converges fast to zero velocity than
the trajectory (i) because the neuro—controller minimizes
the velocity error by means of friction compensation.

We also investigate the angular velocity of the mirror
with a constant disturbance in the time interval between
0.7 and 0.88 second and a random disturbance in the rest
intervals. The magnitude of the constant
disturbance is 0.2 deg/sec and the random disturbance is
uniformly distributed between 0.2 and -0.2 deg/sec. Fig.
11(a) shows positive angular velocity at time interval
between 0.7 second and 0.88 second (indicated by an
arrow), but the response in Fig. 11(b) converges to the

of time
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zero velocity since the neuro-controller compensates the
frictional force.
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Fig. 8 Angular velocity of the mirror with the
different command signal, (a) by the PI/
LEAD controller and (b) by the neuro-

controller.
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Fig. 9. Angular velocity of the mirror with different
magnitude of coulomb friction, (a) by the
PI/LEAD controller and (b) by the neuro-
controller.
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Fig. 10. Angular velocity of the mirror with a
sinusoidal disturbance and a coulomb fric-
tion. (i) by the PI/LEAD controller and
(i1) by the neuro—controller.
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Fig. 11. Angular velocity of the mirror with ran-
dom and constant disturbance, (a) by the
PI/LEAD controller and (b) by the neuro-
controller.

Finally, we investigate the angular velocity of the
mirror when there exist coulomb friction with width
parameter D as in Fig. 12 and a disturbance measured at
a field test (Fig. 13). The simulation result shows good
tracking and disturbance rejection properties of the neuro
controller, compared with the result of the PI/LEAD
controller. The neuro-controller properly compensates the
friction even if the coulomb friction has the width

parameter D.

V1. Conclusion
In this paper, we have developed a new neuro-
controller for friction compensation of the LSS. The
neuro-controller consists of a conventional PI/LEAD
controller and an NNC. Indirect learning control scheme
for training the NNC is adopted. The tracking error and
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Fig. 13. The disturbance measured at a field test.
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Fig. 14. Angular velocity of the mirror with
coulomb friction with width parameter D
and disturbance by field measurements, (a)
by the PI/LEAD controller and (b) by the
neuro-controller.

its integral are used as inputs to the NNC to compensate
frictional force, while the filtered control input is also
used as an additional input to the NNC to reduce the
overshoot of the control system. It has been verified by
simulations that the neuro -controller senses the tracking
error and compensates the frictional force adaptively
when the magnitude of coulomb friction is piecewise

constant and that the NNC predicts the large overshoot
ahead of time and makes proper correcting efforts before
the overshoot actually occurs. The stabilization per—
formance of the neuro-controller is excellent compared
with that of the PI/LEAD controller under random,
sinusoidal and constant disturbances. Future research on
this subject is to find an optimum value of the filter
constant so that the best tracking and stabilization
performance can be guaranteed.
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