DOI QR코드

DOI QR Code

Equivalent Friction Angle and Cohesion of the Generalized Hoek-Brown Failure Criterion in terms of Stress Invariants

응력불변량으로 표현한 일반화된 Hoek-Brown 파괴조건식의 등가 마찰각 및 점착력

  • 이연규 (군산대학교 해양과학대학 해양건설공학과) ;
  • 최병희 (한국지질자원연구원 지구환경연구본부)
  • Received : 2012.12.14
  • Accepted : 2012.12.20
  • Published : 2012.12.31

Abstract

Implementing the generalized Hoek-Brown failure criterion in the framework of the Mohr-Coulomb criterion requires the calculation of the equivalent friction angle and cohesion. In the conventional method based on the Balmer (1952)'s theory, the tangential instantaneous friction angle and cohesion are expressed in terms of the minimum principal stress ${\sigma}_3$, which does not provide the information about the dependency of the equivalent parameters on the hydrostatic pressure and the stress path. In this study, this defect of the conventional method has been overcome by representing the equivalent parameters in terms of stress invariants. Through the example implementation of the new method, the influence of the magnitude of the hydrostatic pressure and the Lode angle on the tangential instantaneous friction angle and cohesion is investigated. It turns out that the tangential instantaneous friction angle is maximum when the stress condition is triaxial extension, while the tangential cohesion is maximum when the stress condition is triaxial compression. The dependency of the equivalent Mohr-Coulomb strength parameters on the hydrostatic pressure and the Lode angle tends to be more substantial for the favorable rockmass of larger GSI value.

일반화된 Hoek-Brown 암반파괴조건식을 Mohr-Coulomb 파괴조건에 기초한 암반구조물 해석법에 적용시키기 위해서는 등가 마찰각과 등가 점착력을 계산하는 과정이 필요하다. Balmer(1952)이론에 기초한 기존의 접선 순간마찰각과 순간점착력 계산식은 최소주응력 ${\sigma}_3$의 함수로 표시되므로 등가 강도정수의 정수압 의존성 및 응력경로 의존성을 이해하는 데 적합지 않다. 이 연구에서는 응력불변량을 이용하여 일반화된 Hoek-Brown식의 접선 순간마찰각과 순간점착력 계산하는 방법을 제시하여 기존의 방법이 갖는 단점을 극복하였다. 제시된 방법을 이용한 예제 해석을 통해 접선 순간마찰각과 순간점착력의 정수압 의존특성 및 파괴곡면의 팔면체 단면에서 Lode각의 의존성을 고찰하였다. 접선 순간마찰각은 삼축신장 응력조건에서 가장 크며, 접선 순간점착력은 삼축압축 응력조건에서 가장 큰 것으로 나타났다. 접선 순간마찰각과 순간점착력의 정수압 및 Lode각 의존성은 GSI 값이 큰 양호한 암반에서 상대적으로 큰 것으로 나타났다.

Keywords

References

  1. Balmer, G., 1952, A general analytical solution for Mohr's envelope. American Society of Testing and Materials Vol. 52, pp. 1260-1271.
  2. Dawson, E.M., Roth, W.H. and Drescher, A., 1999, Slope stability analysis by strength reduction, Geotechnique, Vol. 49(6), pp. 835-840. https://doi.org/10.1680/geot.1999.49.6.835
  3. Fu, W., and Liao, Y., 2010, Non-linear shear strength reduction technique in slope stability calculation, Computers and Geotechnics, Vol. 37, pp. 288-298. https://doi.org/10.1016/j.compgeo.2009.11.002
  4. Hoek., E. and Brown E.T., 1980a, Underground excavations in rock, The Institution of Mining and Metallurgy, London.
  5. Hoek, E., and Brown, E.T., 1980b, Empirical strength criterion for rock masses. J. Geotech. Eng. Div. ASCE, Vol.106 (GT9), pp. 1013-1035.
  6. Hoek, E., 1990, Estimating Mohr-Coulomb friction and cohesion values from the Hoek-Brown failure criterion. Int. J. Rock Mech. Min. Sci., Vol. 27(3), pp. 227-229. https://doi.org/10.1016/0148-9062(90)94333-O
  7. Hoek, E., Kaiser, P.K. and Bawden, W.F., 1995, Support of underground excavations in hard rock. Rotterdam:Balkema
  8. Hoek, E., Carranza-Torres and C., Corkum, B., 2002, Hoek-Brown criterion - 2002 edition. Proc NARMS-TAC Conf, Toronto, Vol. 1, pp. 267-273.
  9. Hoek, E., and Marinos, P., 2007, A brief history of the development of the Hoek-Brown failure criterion, Soils and Rocks, No. 2, pp. 1-13.
  10. Lee, Y.-K., 2012, Comparative study on the rock failure criteria taking account of the intermediate principal stress, Tunnel & Underground Space (J. Korean Society for Rock Mechanics), Vol. 22, pp. 12-21. https://doi.org/10.7474/TUS.2012.22.1.012
  11. Lee, Y.-K., 2011, Study on a 3-dimensional rock failure criterion approximating to Mohr-Coulomb surface, Tunnel & Underground Space (J. Korean Society for Rock Mechanics), Vol. 21, pp. 93-102.
  12. Lee, Y.K. and Bobet, A., 2012, Instantaneous friction angle and cohesion of 2-D and 3-D Hoek-Brown rock failure criteria in terms of stress invariants, Rock Mech. and Rock Eng. (submitted).
  13. Nayak, G.C. and Zienkiewicz, O.C., 1972, Convenient forms of stress invariants for plasticity, J. Struct. Div. ASCE, Vol. 98, pp. 949-953.
  14. Pietruszczak, S., 2010, Fundamentals of plasticity in geomechanics, CRC Press.
  15. Ucar, R., 1986, Determination of shear failure envelope in rock masses. J. Geotech. Eng., Vol. 112(3), pp. 303-315. https://doi.org/10.1061/(ASCE)0733-9410(1986)112:3(303)

Cited by

  1. Dependency of Tangential Friction Angle and Cohesion of Non-linear Failure Criteria on the Intermediate Principal Stress vol.23, pp.3, 2013, https://doi.org/10.7474/TUS.2013.23.3.219
  2. Derivation of Mohr Envelope of Hoek-Brown Failure Criterion Using Non-Dimensional Stress Transformation vol.24, pp.1, 2014, https://doi.org/10.7474/TUS.2014.24.1.081
  3. Stability Analysis for Ground Uplift in Underground Storage Caverns for High Pressurized Gas using Hoek-Brown Strength Criterion and Geological Strength Index (GSI) vol.24, pp.4, 2014, https://doi.org/10.7474/TUS.2014.24.4.289