• Title/Summary/Keyword: Corrosion-resistance

Search Result 2,692, Processing Time 0.031 seconds

Effect of Tungsten-Substitution on the Corrosion Resistance of 2205 Duplex Stainless Steel (2205 2상 스테인리스강의 내식성에 미치는 텅스텐 치환의 영향)

  • 김기엽;안용식;정병호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.704-713
    • /
    • 2003
  • The effect of partial substitution of tungsten for molybdenum on the microstructure and corrosion resistance in 22Cr-5Ni-3Mo duplex stainless steel(DSS) aging heat treated in a temperature range of 600~$1000^{\circ}C$ has been investigated. Electrochemical tests were carried out for the evaluation of corrosion resistance. Aging treatment had hardly influenced the general corrosion resistance. With the increase of aging time, the pitting corrosion resistance of the DSS had decreased, After aging for 2min at 700~$900^{\circ}C$, the pitting potential of the 3Mo steel decreased remarkably, while that of the W-substituted steel hardly changed. During aging. the intermetallic $\sigma$ and secondary austenite ($\gamma_2$) phases were precipitated. and the pitting corrosion and intergranular corrosion resistance were significantly decreased after aging at 700~$750^{\circ}C$ for 10 h, which could be caused by the $\gamma_2$ formation. The ${\gamma}$$_2$ phase could affect the depletion of molybdenum and chromium in the $\gamma_2/\alpha and \gamma_2/\sigma$ boundaries.

Study on an On-line Measurement System of Corrosion Rate by Linear Polarization Resistance (분극저항에 의한 온라인 부식속도 측정 시스템에 관한 연구)

  • Moon, Jeon Soo;Lee, Jae Kun;Lee, Jae Bong;Park, Pyl Yang
    • Corrosion Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.135-140
    • /
    • 2012
  • The linear polarization resistance method is one of the widely used techniques for the corrosion rate monitoring in the water circulating systems of plants. The measurement is simple and rapid, so that a continuous on-line monitoring is possible without any shutdown of plants. A 2-electrode polarization corrosion rate measurement system was installed in a laboratory using a data acquisition board and PC. The signal processing parameters were optimized for the accurate corrosion rate measurement, and the polarization resistance was compensated with the solution resistance measured by the high frequency sine wave signal of an output channel. The precision of corrosion rate data was greatly improved by removing the initial noise signals on measuring the polarization resistance.

An Experimental Study on Corrosion Resistance of Cracked Concrete (균열 콘크리트에서의 부식저항성에 관한 실험적 연구)

  • Song, Ha-Won;Lee, Chang-Hong;Ann, Ki-Yong;Lee, Kewn-Chu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.517-520
    • /
    • 2008
  • In this study, corrosion resistance of steel in cracked-reinforced concrete was performed according to experimental method. Mixed design is OPC, 30% PFA, 60% GGBS and 10% SF, respectively. Moreover, corrosion resistance test was measured using ultra testing machine for 0.3mm crack induction. The corrosion resistance of blended concrete shows the results following OPC > 10%SF > 30% PFA > 60% GGBS after 60days curing. In case of mass loss test, embedded reinforcement in OPC concrete surveyed the minimum corrosion and appeared better corrosion resistance than blended concrete. As a result, corrosion resistance of sound concrete is higher than cracked concrete. Moreover, corrosion resistance of binary concrete is lower than OPC.

  • PDF

The Effect of Heat Input and Shielding Gas Composition on Corrosion Resistance of TIG Weld Metal of New Lean Duplex Stainless Steel S82441

  • Niagaj, J.;Brytan, Z.
    • Corrosion Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.278-284
    • /
    • 2017
  • The effects of TIG welding and post-treatment procedures on the microstructure and the pitting corrosion resistance of welded lean duplex stainless steel S82441 were investigated. Autogenous TIG welding was used with different amounts of heat input and shielding gases such as Ar, and mixtures of $Ar-N_2$ and Ar-He. The addition of 5% to 15% of nitrogen to argon practically did not affect the level of the pitting corrosion resistance. However, the application of gas mixtures (50% Ar + 50% He) resulted in a significant decrease in pitting corrosion resistance. We found that increased current (200 A and 250 A) led to lower values of CPT of welds compared with welds obtained with 50 A, 100 A and 150 A. In addition, the removal of the weld surface layer (0.2 ~ 0.3 mm thickness) in most cases not only resulted in a significant increase in resistance to the pitting corrosion but also post-treatment of weld, implying that corrosion resistance depended on factors such as surface roughness or the presence of undesirable oxides.

Investigation of Functional 6061 Aluminum Alloy Oxide Film with Anodization Voltage and its Corrosion Resistance

  • Jisoo Kim;Chanyoung Jeong
    • Corrosion Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.399-407
    • /
    • 2023
  • This study investigated the formation of oxide films on 6061 aluminum (Al) alloy and their impacts on corrosion resistance efficiency by regulating anodization voltage. Despite advantageous properties inherent to Al alloys, their susceptibility to corrosion remains a significant limitation. Thus, enhancing corrosion resistance through developing protective oxide films on alloy surfaces is paramount. The first anodization was performed for 6 h with an applied voltage of 30, 50, or 70 V on the 6061 Al alloy. The second anodization was performed for 0.5 h by applying 40 V after removing the existing oxide film. Resulting oxide film's shape and roughness were analyzed using field emission-scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). Wettability and corrosion resistance were compared before and after a self-assembled monolayer (SAM) using an FDTS (1H, 1H, 2H, 2H-Perfluorodecyltrichlorosilane) solution. As the first anodization voltage increased, the final oxide film's thickness and pore diameter also increased, resulting in higher surface roughness. Consequently, all samples exhibited superhydrophilic behavior before coating. However, contact angle after coating increased as the first anodization voltage increased. Notably, the sample anodized at 70 V with superhydrophobic characteristics after coating demonstrated the highest corrosion resistance performance.

Evaluation of the Characteristics of the Aluminum Alloy(AC8A) Casting Material by Heat Treatment(II) (AC8A 알루미늄 합금 주조재의 열처리에 의한 특성 평가(II))

  • Moon, Kyung-Man;Jeong, Jae-Hyun;Lee, Myeong-Hoon;Baek, Tae-Sil
    • Journal of Power System Engineering
    • /
    • v.20 no.5
    • /
    • pp.29-36
    • /
    • 2016
  • Aluminum alloys have been widely used in engine materials, cold & hot-water storage vessels and piping etc., Furthermore, the aluminum alloy of AC8A have been widely used in mold casting material of engine piston for various vehicles because of its properties of temperature, wear and corrosion resistance. Therefore, it is considered that evaluation of corrosion resistance as well as wear resistance of AC8A material is also important to improve its property and to prolong its lifetime. In previous paper, the effect of solution($510^{\circ}C$:4hrs) and tempering($190^{\circ}C$: 16, 24, and 36 hrs)heat treatments to corrosion resistance and hardness were investigated using electrochemical method. In this study, in order to examine completely the effect of the tempering hours to hardness variation and corrosion resistance, the results of solution($510^{\circ}C$:4hrs) and tempering($190^{\circ}C$: 2, 4, 8 and 12hrs)heat treatments to hardness and corrosion resistance were investigated using electrochemical method. The hardness decreased with solution heat treatment compared to mold casting condition, but its value increased with tempering heat treatment. Furthermore, the corrosion resistance increased with decreasing of the hardness, and decreased with increasing of the hardness reversely. And the tempering heat treatment temperature at $190^{\circ}C$ for 8 hrs exhibited the highest value of the hardness and also indicated the highest corrosion current density. However, the values of hardness and corrosion current density was again increasingly decreased with increasing of tempering hours than 8 hrs, Consequently, it is suggested that decision of the optimum. tempering hours is very important to improve the corrosion or wear resistance.

The Effect of Annealing Heat Treatment Affecting Hardness and Corrosion Resistance of ALDC 12 Al Alloy (ALDC 12종의 경도와 내식성에 미치는 어닐링 열처리의 영향)

  • Cho, Hwang-Rae;Lee, Myeong-Hoon;Lee, Seung-Yeol;Moon, Kyung-Man
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.95-96
    • /
    • 2006
  • ALDC 12 Al alloy is often corroded with some forms such as pitting corrosion, intergranular corrosion, and galvanic corrosion etc., in case of severe corrosion environment like seawater Annealing heat treatment was performed to improve the corrosion resistance of ALDC 12. Hardness was decreased with increasing of annealing temperature, however its corrosion resistance was clearly improved with increasing of annealing temperature.

  • PDF

Effect of Surface Pretreatment on the Corrosion Resistance of Epoxy-Coated Carbon Steel

  • Lee, DongHo;Park, JinHwan;Shon, MinYoung
    • Corrosion Science and Technology
    • /
    • v.11 no.5
    • /
    • pp.165-172
    • /
    • 2012
  • The corrosion resistance of epoxy-coated carbon steel was evaluated. The carbon steel surface was subjected to different treatment methods such as steel grit blasting with different size, steel shot ball blasting and power tool treatment. To study the effect of the treatments, the topology of the treated surface was observed by optical 3D microscopy and a pull-off adhesion test was conducted. The corrosion resistance of the epoxy-coated carbon steel was further examined by electrochemical impedance spectroscopy (EIS) combined with hygrothermal cyclic testing. The results of EIS indicated that the epoxy-coated carbon steel treated with steel grit blasting showed an improved corrosion resistance compared to untreated epoxy-coated surfaces or surfaces subjected to shot ball blasting and power tool treatments.

Application of waste biomass as ecological corrosion inhibitors for steel rebar embedded in cement mortar (시멘트 모르타르에 매립된 철근의 생태학적 부식방지제로서 폐기물 바이오매스의 적용)

  • Karthick, Subbiah;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.111-112
    • /
    • 2022
  • In this present study, the corrosion mitigation effect of conifer cone extract (CC) was examined in the cement mortar to improve the steel rebar (SR) corrosion resistance. The corrosion inhibition properties of the SR embedded in cement mortar (CM) admixed with different percentage (0, 0.5, 1.0, 1.5, 2.0 %) of CC was studied by open circuit potential (OCP) and electrochemical impedance spectroscopy (EIS) tests. This result confirms that the CM with 0.5% of CC added has better corrosion resistance than the blank specimen (0 % of CC). Although, the percentage of CC increase above 0.5%, the CC could yield a negative impact on CM properties in terms of reducing the corrosion resistance due to the reduction of cement hydration reaction. It was highlighted that the SR embedded in CM containing 0.5% of CC had increased corrosion resistance.

  • PDF

Corrosion Resistance of Super Duplex Stainless Steel (수퍼 2상 스테인리스강의 부식 저항성에 관한 연구)

  • 강흥주;남기우;안석환;강창룡;도재윤;박인덕
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.2
    • /
    • pp.40-46
    • /
    • 2003
  • The corrosion resistance of super duplex stainless steel on both its fibrous and dispersed phase was investigated. These structures consist of various volume fraction and distribution of austenite structure, which were obtained by changing the heat treatment temperature and cycle. The fibrous phase had higher austenite volume fraction than that of the dispersed phase at the same temperature. Corrosion resistance of super duplex stainless steel was evaluated through an immersion test and an impingement test, using 35% HCI and sea water, respectively. Super duplex stainless steel was compared with STS316L and STS304. The corrosion resistance of super duplex stainless steel was superior to ST316L and STS304. The dispersed phase of super duplex stainless steel was more stabilized than the fibrous phase in corrosion. The magnitude of corrosion rate was in order STS304, STS316L, fibrous phase of super duplex stainless steel and dispersed phase of super duplex stainless steel.