• Title/Summary/Keyword: Corrosion detection

Search Result 163, Processing Time 0.028 seconds

A vibration based acoustic wave propagation technique for assessment of crack and corrosion induced damage in concrete structures

  • Kundu, Rahul Dev;Sasmal, Saptarshi
    • Structural Engineering and Mechanics
    • /
    • v.78 no.5
    • /
    • pp.599-610
    • /
    • 2021
  • Early detection of small concrete crack or reinforcement corrosion is necessary for Structural Health Monitoring (SHM). Global vibration based methods are advantageous over local methods because of simple equipment installation and cost efficiency. Among vibration based techniques, FRF based methods are preferred over modal based methods. In this study, a new coupled method using frequency response function (FRF) and proper orthogonal modes (POM) is proposed by using the dynamic characteristic of a damaged beam. For the numerical simulation, wave finite element (WFE), coupled with traditional finite element (FE) method is used for effectively incorporating the damage related information and faster computation. As reported in literature, hybrid combination of wave function based wave finite element method and shape function based finite element method can addresses the mid frequency modelling difficulty as it utilises the advantages of both the methods. It also reduces the dynamic matrix dimension. The algorithms are implemented on a three-dimensional reinforced concrete beam. Damage is modelled and studied for two scenarios, i.e., crack in concrete and rebar corrosion. Single and multiple damage locations with different damage length are also considered. The proposed methodology is found to be very sensitive to both single- and multiple- damage while being computationally efficient at the same time. It is observed that the detection of damage due to corrosion is more challenging than that of concrete crack. The similarity index obtained from the damage parameters shows that it can be a very effective indicator for appropriately indicating initiation of damage in concrete structure in the form of spread corrosion or invisible crack.

The Cause Analysis of Pitting Corrosion on the Waterjet Impeller (물분사 추진기 임펠러 부식에 대한 원인분석)

  • Lee, Hyeong-Sin;Jung, Un-Hwa
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.545-551
    • /
    • 2020
  • Cause analysis of surface pitting crack on a waterjet impeller was conducted. The waterjet impeller was made from stainless steel duplex 2205, which is more resistant to corrosion and local corrosion than typical stainless steel 316L and 317L, and has high mechanical strength, making it a useful material in various marine structures and seawater desalination facilities. The measurements were taken by scanning electron microscopy (SEM) and molecular ecological detection. The chemical composition of S was examined by SEM in the area of pitting corrosion. The dsrAB gene was detected on the sample of the pitting corrosion of the impeller through molecular ecological detection. Therefore, pitting corrosion on the surface of a waterjet impeller was caused by sulphite-reducing bacteria (SRB). To prevent the spread of SRB, management is required through high temperature treatments (over 65℃), pH management, or the insulation of a hull and waterjet.

Detection of SCC by Electrochemical Noise and In-Situ 3-D Microscopy

  • Xia, Da-Hai;Behnamian, Yashar;Luo, Jing-Li;Klimas, Stan
    • Corrosion Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.194-200
    • /
    • 2017
  • Stress-corrosion cracking (SCC) of alloy 600 and alloy 800 in 0.5 mol/L thiosulfate solution during constant strain was investigated using electrochemical noise (EN) combined with 3-D microscope techniques. The in-situ morphology observation and EN results indicate that the SCC process could be divided into three stages: (1) passive film stabilization and growth, (2) crack initiation, (3) and crack growth. Power Spectral Density (PSD) and the probability distribution obtained from EN were used as the "fingerprint" to distinguish the different processes. During passive film stabilization and growth, the current noise signals resembled "white noise": when the crack initiated, many transient peaks could be seen in the current noise and the wavelet energy at low frequency as well as the noise resistance decreased. After crack propagation, the noise amplitudes increased, particularly the white noises at low and high frequencies ($W_L$ and $W_H$) in the PSDs. Finally, the detection of metal structure corrosion in a simulated sea splash zone and pipeline corrosion in the atmosphere are established.

ACSR Inner Corrosion Detection by Eddy Current Sensor (와전류센서를 이용한 ACSR 전선의 내부부식 검출)

  • 강연욱;강지원;양병모;정재기
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.12 no.1
    • /
    • pp.12-19
    • /
    • 1998
  • This paper deals with ACSR(Aluminum Conductor Steel Reinforced) inner corrosion detection using a detector which automatically runs on an ACSR distribution line and inspects the inner corrosion of the conductor by utilization of the nondestructive eddy current test. According to corrosion appearance and development of ACSR, the impedance change of the eddy current coils is theoretically verified. And then specifications and performances of the detector are described. Experimental procedures and desirable test results are reported. In conclusion, this detector can realize the nondestructive detecting of an ACSR inner corrosion. Upgrading the maintenance efficiency and improving the reliability of distribution line, whether is covered with insulating materials or not, would be expected by this nondestructive test method.method.

  • PDF

Remote Field Eddy Current Testing for Detection of Stress Corrosion Cracks in Gas Transmission Pipelines (가스 파이프라인 상의 압력 부식에 의한 흠집 검사를 위한 원격 와전류 탐상 기술)

  • Kim, Dae-Won
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.6
    • /
    • pp.305-308
    • /
    • 2006
  • Magnetic flux leakage (MFL) pigs are traditionally used for the detection of gross corrosion on steel pipelines used for the transmission of natural gas. Alternative nondestructive evaluation (NDE) modalities are required for the detection of stress corrosion cracking (SCC) which tends to exist in colonies oriented axially along the length of the pipeline. This paper describes the use of multiphase rotating magnetic fields in the remote region of the probe as a possible SCC detection mechanism. Details of a prototype pig and test rig are given and the challenges associated with the finite element modeling of the device are discussed. Initial experimental results show that this novel NDE modality is sensitive to axially oriented tight cracks.

Effect of Applied Voltage on the Reliability of Coating Flaw Detection of Pipe with Different Buried Depths

  • Lim, B.T.;Kim, M.G.;Kim, K.T.;Chang, H.Y.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.277-284
    • /
    • 2019
  • External corrosion control of buried pipe can be achieved by the combination of barrier coating and cathodic protection. Coating damage and deterioration can be induced by many reasons; damage during handling and laying, enhanced failure at low temperatures, failure during commissioning and operation, disbanding due to inadequate surface cleaning, rock penetration during installation and service etc. This work focused on the effect of survey conditions on the reliability of coating flaw detection of buried pipes. The effects of applied voltage and anode location on the detection reliability of coating flaw of buried pipe in soil with the resistivity of ca. 25.8 kΩ·cm were discussed. Higher applied voltage increased the detection reliability, regardless of buried depth, but deeper burial depth reduced the reliability. The location of the anode has influenced on the detection reliability. This behaviour may be induced by the variation of current distribution by the applied voltage and buried depth. From the relationship between the applied voltage and reliability, the needed detection potential to get a desire detection reliability can be calculated to get 100% detection reliability using the derived equation.

Application of Electrochemical Accelerated Corrosion Technique to Detection of Reinforcing Corrosion in Concrete (전기화학적 부식촉진 기법을 이용한 철근 콘크리트 부식의 영향평가)

  • 이수열;이재봉;정영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.675-678
    • /
    • 1999
  • Rebar corrosion in concrete containing both chloride ions and calcium nitrite inhibitors were investigated by the various electrochemical methods. Rebar corrosion was accelerated by applying the impressed current to the rebar in concrete. Effect of chloride content and inhibitors on rebar corrosion were evaluated. Accelerated corrosion technique is the method to measure the time to the initiation of cracks of reinforced concretes, by applying constant voltage between rebar and the stainless steel cathedes. The increase of concentration of chloride ions in concrete result in the increase in anodic currents and the reduction of time to crack. However addition of inhibitors did not improve corrosion resistance of rebar in concrete. Rebar corrosion in concrete with chloride ions and inhibitors was also analyzed by the immersed tests though the mesurement of corrosion potentials.

  • PDF

Non Destructive Technique for Steel Corrosion Detection Using Heat Induction and IR Thermography (열유도 장치와 적외선 열화상을 이용한 철근부식탐지 비파괴 평가기법)

  • Kwon, Seung Jun;Park, Sang Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.2
    • /
    • pp.40-48
    • /
    • 2012
  • Steel corrosion in concrete is a main cause of deterioration and early failure of concrete structures. A novel integration of electromagnetic heat induction and infrared (IR) thermography is proposed for nondestructive detection of steel corrosion in concrete, by taking advantage of the difference in thermal characteristics of corroded and non-corroded steel. This paper focuses on experimental investigation of the concept. An inductive heater is developed to remotely heat the embedded steel from concrete surface, which is integrated with an IR camera. Concrete samples with different cover depths are prepared. Each sample is embedded with a single rebar in the middle, resulting an identical cover depth from the front and the back surfaces, which enable heat induction from one surface and IR imaging from the other simultaneously. The impressed current (IC) method is adopted to induce accelerated corrosion on the rebar. IR video images are recorded during the entire heating and cooling periods. The test results demonstrate a clear difference in thermal characteristics between corroded and non-corroded samples. The corroded sample shows higher rates of heating and cooling than those of the non-corroded sample. This study demonstrates a potential for nondestructive detection of rebar corrosion in concrete.

Technology for the Detection of Corrosion Defects in Buried Pipes of Nuclear Power Plants with 3D FEM (3D 유한요소법을 이용한 원전 매설배관 부식결함 탐상기술 개발)

  • Kim, Jae-Won;Lim, Bu-Taek;Park, Heung-Bae;Chang, Hyun-Young
    • Corrosion Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.292-300
    • /
    • 2018
  • The modeling of 3D finite elements based on CAD data has been used to detect sites of corrosion defects in buried pipes. The results generated sophisticated profiles of electrolytic potential and vectors of current distributions on the earth surface. To identify the location of defects in buried pipes, the current distribution on the earth surface was projected to a plane of incidence that was identical to the pipe locations. The locations of minimum electrolytic potential value were found. The results show adequate match between the locations of real and expected defects based on modeling. In addition, the defect size can be calculated by integrating the current density curve. The results show that the defect sizes were $0.74m^2$ and $0.69m^2$, respectively. This technology may represent a breakthrough in the detection of indirect damage in various cases involving multiple defects in size and shape, complex/cross pipe systems, multiple anodes and stray current.

Effects of Rectifier and Copper Grid Interference on the Detection Reliability of Coating Flaws on Buried Pipes (매설 배관 피복 결함 탐상 정확도에 미치는 인접 정류기 및 접지 구리망 간섭의 영향)

  • Kim, M.G.;Lim, B.T.;Kim, K.T.;Chang, H.Y.;Park, H.B.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.211-223
    • /
    • 2020
  • The external corrosion of buried piping can be controlled using both coating and cathodic protection. Several factors are involved in the damage and deterioration of the coating on pipes. There are many detection methods for coating defects on pipes and the direct current voltage gradient (DCVG) method is one of the most powerful methods. However, the detection reliability of DCVG can be affected by interferences such as stray current, metal objects connected to rectifiers, and copper grids. Therefore, this study focused on the interference effects of rectifiers and a copper grid on the reliability of coating flaw detection. As the length of the interference pipe connected to the rectifier increased, the reliability decreased. In contrast, as the distance between the pipe and the copper grid increased, the reliability of the coating flaw detection increased. The detection results produced by the DCVG method were discussed using current and potential simulations for a pipe with a rectifier and copper grid interference in the soil.