Browse > Article
http://dx.doi.org/10.14773/cst.2019.18.6.277

Effect of Applied Voltage on the Reliability of Coating Flaw Detection of Pipe with Different Buried Depths  

Lim, B.T. (Materials Research Center for Energy and Green Technology, School of Materials Science and Engineering, Andong National University)
Kim, M.G. (Materials Research Center for Energy and Green Technology, School of Materials Science and Engineering, Andong National University)
Kim, K.T. (Materials Research Center for Energy and Green Technology, School of Materials Science and Engineering, Andong National University)
Chang, H.Y. (Power Engineering Research Institute, KEPCO E&C)
Kim, Y.S. (Materials Research Center for Energy and Green Technology, School of Materials Science and Engineering, Andong National University)
Publication Information
Corrosion Science and Technology / v.18, no.6, 2019 , pp. 277-284 More about this Journal
Abstract
External corrosion control of buried pipe can be achieved by the combination of barrier coating and cathodic protection. Coating damage and deterioration can be induced by many reasons; damage during handling and laying, enhanced failure at low temperatures, failure during commissioning and operation, disbanding due to inadequate surface cleaning, rock penetration during installation and service etc. This work focused on the effect of survey conditions on the reliability of coating flaw detection of buried pipes. The effects of applied voltage and anode location on the detection reliability of coating flaw of buried pipe in soil with the resistivity of ca. 25.8 kΩ·cm were discussed. Higher applied voltage increased the detection reliability, regardless of buried depth, but deeper burial depth reduced the reliability. The location of the anode has influenced on the detection reliability. This behaviour may be induced by the variation of current distribution by the applied voltage and buried depth. From the relationship between the applied voltage and reliability, the needed detection potential to get a desire detection reliability can be calculated to get 100% detection reliability using the derived equation.
Keywords
Buried pipe; Coating flaw detection; Buried depth; Detection potential; Reliability;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 A. Osella, A. Favetto, and E. Lopez, Corrosion, 55, 699 (1999).   DOI
2 Z. Masilela and J. Pereira, Eng. Fail. Anal., 5, 99 (1998).   DOI
3 J. H. Park, H. M. Kim, and G. S. Park, J. Korean Magn. Soc., 26, 24 (2016).   DOI
4 S. L. Shin, G. H. Lee, U. Ahmed, Y. K. Lee, and C. H. Han, J. Hazard. Mater., 342, 279 (2018).   DOI
5 Y. D. Ryou, J. J. Kim, and D. K. Kim, J. Korean Inst. Gas, 19, 38 (2015).
6 J. J. Kim, M. S. Seo, and D. K. Kim, J. Korean Inst. Gas, 18, 66 (2014).   DOI
7 J. O. Jeong, J. K. Yi, and H. J. Kim, J. Korean Soc. Nondestruc. Test., 21, 556 (2001).
8 Y. D. Ryou, J. H. Lee, Y. D. Jo, and J. J. Kim, J. Korean Inst. Gas, 20, 50 (2016).
9 K. J. Satsios, D. P. Labridis, and P. S. Dokopoulos, Eur. T. Electr. Power, 8, 193 (1998).   DOI
10 D. H. Boteler, L. Trichtchenko, C. Blais, and R. Pirjola, Proc. Corrosion 2013 Conf., p. 2522, ID NACE-2013-2522, NACE International, Orlando, Florida, USA (2013).
11 Y. B. Cho, K. W. Park, K. S. Jeon, H. S. Song, D. S. Won, S. M. Lee, and Y. T. Kho, Proc. International Pipeline Conf., p. 463, Paper No. IPC1996-1851, ASME International, Calgary, Alberta, CA (1996). https://doi.org/10.1115/ PC1996-1851
12 M. Magura and J. Brodniansky, Procedia Engineer., 40, 50 (2012).   DOI
13 Y. B. Cho, K. W. Park, K. S. Cheon, H. S. Song, D. S. Won, S. M. Lee, and Y. T. Kho, Corros. Sci. Tech., 24, 167 (1995).
14 A. Smart, G. Lupia, A. Iuga. and J. Cavallo, APEC Validation for Reasonable Assurance of Buried Piping Integrity, EPRI (2014).
15 H. Y. Chang, K. T. Kim, B. T. Lim, K. S. Kim, J. W. Kim, H. B. Park, and Y. S. Kim, Corros. Sci. Tech., 16, 115 (2017).   DOI
16 H. Y. Chang, H. B. Park, K. T. Kim, Y. S. Kim, and Y. Y. Jang, Trans. Korean Soc. Press. Vessel. Pip., 11, 61 (2015).
17 K. T. Kim, H. W. Kim, Y. S. Kim, H. Y. Chang, B. T. Lim, and H. B. Park, Corros. Sci. Tech., 14, 12 (2015).   DOI
18 E. S. Ibrahim, Electr. Pow. Syst. Res., 52, 9 (1999).   DOI
19 J. G. Kim and Y. W. Kim, Corros. Sci., 43, 2011 (2001).   DOI
20 I. Gurrappa, J. Mater. Process. Technol., 166, 256 (2005).   DOI
21 I. A. Metwally, H. M. Al-Mandhari, A. Gastli, and Z. Nadir, Eng. Anal. Bound. Elem., 31, 485 (2007).   DOI
22 S. Srikanth, T. S. N. Sankaranarayanan, K. Gopalakrishna, B. R. V. Narasimhan, T. V. K. Das, and S. K. Das, Eng. Fail. Anal., 12, 634 (2005).   DOI
23 A. Osella, A. Favetto, and E. Lopez, Appl. Geophys., 38, 219 (1998).   DOI
24 A. Osella and A. Favetto, Appl. Geophys., 44, 303 (2000).   DOI
25 L. C. Wrobel and P. Miltiadou, Eng. Anal. Bound. Elem., 28, 267 (2004).   DOI
26 R. A. Gummow and P. Eng, J. Atmos. Sol.-Terr. Phys., 64, 1755 (2002).   DOI
27 O. Abootalebi, A. Kermanpur, M. R. Shishesaz, and M. A. Golozar, Corros. Sci., 52, 678 (2010).   DOI
28 S. A. Shipilov and I. L. May, Eng. Fail. Anal., 13, 1159 (2006).   DOI