Browse > Article
http://dx.doi.org/10.14773/cst.2020.19.4.211

Effects of Rectifier and Copper Grid Interference on the Detection Reliability of Coating Flaws on Buried Pipes  

Kim, M.G. (Materials Research Center for Energy and Green Technology, School of Materials Science and Engineering, Andong National University)
Lim, B.T. (Materials Research Center for Energy and Green Technology, School of Materials Science and Engineering, Andong National University)
Kim, K.T. (Materials Research Center for Energy and Green Technology, School of Materials Science and Engineering, Andong National University)
Chang, H.Y. (Power Engineering Research Institute, KEPCO E&C)
Park, H.B. (Power Engineering Research Institute, KEPCO E&C)
Kim, Y.S. (Materials Research Center for Energy and Green Technology, School of Materials Science and Engineering, Andong National University)
Publication Information
Corrosion Science and Technology / v.19, no.4, 2020 , pp. 211-223 More about this Journal
Abstract
The external corrosion of buried piping can be controlled using both coating and cathodic protection. Several factors are involved in the damage and deterioration of the coating on pipes. There are many detection methods for coating defects on pipes and the direct current voltage gradient (DCVG) method is one of the most powerful methods. However, the detection reliability of DCVG can be affected by interferences such as stray current, metal objects connected to rectifiers, and copper grids. Therefore, this study focused on the interference effects of rectifiers and a copper grid on the reliability of coating flaw detection. As the length of the interference pipe connected to the rectifier increased, the reliability decreased. In contrast, as the distance between the pipe and the copper grid increased, the reliability of the coating flaw detection increased. The detection results produced by the DCVG method were discussed using current and potential simulations for a pipe with a rectifier and copper grid interference in the soil.
Keywords
Buried pipe; Coating flaw detection; Interference; Rectifier; Copper grid;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 J. G. Kim and Y. W. Kim, Corros. Sci., 43, 2011 (2001). https://doi.org/10.1016/S0010-938X(01)00015-4   DOI
2 I. Gurrappa, J. Mater. Process. Tech., 166, 256 (2005). https://doi.org/10.1016/j.jmatprotec.2004.09.074   DOI
3 E. S. Ibrahim, Elect. Pow. Syst. Res., 52, 9 (1999). https://doi.org/10.1016/S0378-7796(98)00133-3   DOI
4 K. T. Kim, H. W. Kim, Y. S. Kim, H. Y. Chang, B. T. Lim, and H. B. Park, Corros. Sci. Tech., 14, 12 (2015). https://doi.org/10.14773/cst.2015.14.1.12   DOI
5 S. Srikanth and T. S. N. Sankaranarayanan, K. Gopalakrishna, B. R. V. Narasimhan, T. V. K. Das, and S. K. Das, Eng. Fail. Anal., 12, 634 (2005). https://doi.org/10.1016/j.engfailanal.2004.02.006   DOI
6 A. Osella, A. Favetto, and E. Lopez, Appl. Geophys., 38, 219 (1998). https://doi.org/10.1016/S0926-9851(97)00019-0   DOI
7 A. Osella and A. Favetto, Appl. Geophys., 44, 303 (2000). https://doi.org/10.1016/S0926-9851(00)00008-2   DOI
8 I. A. Metwally, H. M. Al-Mandhari, A. Gastli, and Z. Nadir, Eng. Anal. Bound. Elem., 31, 485 (2007). https://doi.org/10.1016/j.enganabound.2006.11.003   DOI
9 L. C. Wrobel and P. Miltiadou, Eng. Anal. Bound. Elem., 28, 267 (2004). https://doi.org/10.1016/S0955-7997(03)00057-2   DOI
10 R. A. Gummow and P. Eng, J. Atmos. Sol.-Terr. Phys., 64, 1755 (2002). https://doi.org/10.1016/S1364-6826(02)00125-6   DOI
11 M. E. Orazem, Underground Pipeline Corrosion, 1st ed., p. 227, Woodhead Publishing, Cambridge (2014). https://doi.org/10.1533/9780857099266.2.227
12 Y. B. Cho, Y. T. Kho, S. Y. Li, K. S. Jeon, and K. W. Park, J. Corros. Sci. Soc. of Kor., 26, 400 (1997). http://www.j-cst.org/opensource/pdfjs/web/pdf_viewer.htm?code=J00260500400
13 D. H. Boteler, L. Trichtchenko, C. Blais, and R. Pirjola, Proc. Corrosion 2013 Conf., p. 2522, ID NACE-2013-2522, NACE International, Orlando, Florida, USA (2013).
14 Z. Masilela and J. Pereira, Eng. Fail. Anal., 5, 99 (1998). https://doi.org/10.1016/S1350-6307(98)00006-5   DOI
15 M. Norm, Mater. Performance, 52, 96 (2013).
16 Y. D. Ryou, J. H. Lee, Y. K. Yoon, and H. S. Lim, J. Korean Inst. Gas, 18, 12 (2014). https://doi.org/10.7842/kigas.2014.18.5.12   DOI
17 A. Smart, G. Lupia, A. Iuga, and J. Cavallo, APEC Validation for Reasonable Assurance of Buried Piping Integrity, EPRI (2014).
18 B. T. Lim, M. G. Kim, K. T. Kim, H. Y. Chang, and Y. S. Kim, Corros. Sci. Tech., 18, 277 (2019). https://doi.org/10.14773/cst.2019.18.6.277   DOI
19 J. H. Park, H. M. Kim, and G. S. Park, J. Korean Magn. Soc., 26, 24 (2016). https://doi.org/10.4283/JKMS.2016.26.1.024   DOI
20 S. L. Shin, G. H. Lee, U. Ahmed, Y. K. Lee, and C. H. Han, J. Hazard. Mater., 342, 279 (2018). https://doi.org/10.1016/j.jhazmat.2017.08.029   DOI
21 Y. D. Ryou, J. J. Kim, and D. K. Kim, J. Korean Inst. Gas, 19, 38 (2015). https://doi.org/10.7842/kigas.2015.19.3.38
22 J. J. Kim, M. S. Seo, and D. K. Kim, J. Korean Inst. Gas, 18, 66 (2014). https://doi.org/10.7842/kigas.2014.18.5.66   DOI
23 S. Xie, Z. Duan, J. Li, Z. Tong, M. Tian, and Z. Chen, Sensor. Actuat., A-phys., 309, 112030 (2020). https://doi.org/10.1016/j.sna.2020.112030   DOI
24 Y. D. Ryou, J. H. Lee, Y. D. Jo, and J. J. Kim, J. Korean Ins. Gas, 20, 50 (2016). https://doi.org/10.7842/kigas.2016.20.4.50
25 K. J. Satsios, D. P. Labridis, and P. S. Dokopoulos, Eur. T. Electr. Power, 8, 193 (1998). https://doi.org/10.1002/etep.4450080307   DOI
26 Y. B. Cho, K. W. Park, K. S. Jeon, H. S. Song, D. S. Won, S. M. Lee, and Y. T. Kho, Proc. Int. Pipeline Conf., paper no. IPC 1996-1851, p. 463, Calgary, Alberta, Canada (1996). https://doi.org/10.1115/IPC1996-1851
27 M. Magura and J. Brodniansky, Procedia Engineer., 40, 50 (2012). https://doi.org/10.1016/j.proeng.2012.07.054   DOI
28 Y. B. Cho, K. W. Park, K. S. Cheon, H. S. Song, D. S. Won, S. M. Lee, and Y. T. Kho, J. Corros. Sci. Soc. Kor., 24, 167 (1995). http://www.corrosionkorea.org/publication/publication04_1_vol_result.php?page=2&cs_code=10001&cs_year=1995&cs_issue=1&cs_volume=24&cs_row=10
29 K. S. Kim, B. T. Lim, H. Y. Chang, and H. B. Park, Journal of Power Engineering, 30, 3, 116 (2019).
30 H. Y. Chang, H. B. Park, K. T. Kim, Y. S. Kim, Y. Y. Jang, Trans. Korean Soc. Press. Vessel. Pip., 11, 61 (2015). https://doi.org/10.20466/KPVP.2015.11.2.061
31 Y. Chao, L. Jianliang, L. Zili, Z. Shouxin, D. Long, and Z. Chengbin, Corros. Rev., 37, 273 (2019). https://doi.org/10.1515/corrrev-2018-0089   DOI
32 Z. G. Chen, C. K. Qin, J. X. Tand, and Y. Zhou, J. Nat. Gas Sci. Eng., 15, 76 (2013). https://doi.org/10.1016/j.jngse.2013.09.003   DOI
33 ASME, ASME boiler & pressure vessel section II-Part A, Ferrous Materials Specifications (Beginning to SA-450) (2011).
34 H. Y. Chang, K. T. Kim, B. T. Lim, K. S. Kim, J. W. Kim, H. B. Park, and Y. S. Kim, Corros. Sci. Tech., 16, 115 (2017). https://doi.org/10.14773/cst.2017.16.3.115   DOI