Browse > Article
http://dx.doi.org/10.14773/cst.2017.16.4.194

Detection of SCC by Electrochemical Noise and In-Situ 3-D Microscopy  

Xia, Da-Hai (Department of Chemical and Materials Engineering, University of Alberta)
Behnamian, Yashar (Department of Chemical and Materials Engineering, University of Alberta)
Luo, Jing-Li (Department of Chemical and Materials Engineering, University of Alberta)
Klimas, Stan (Atomic Energy of Canada Ltd, Chalk River Laboratories)
Publication Information
Corrosion Science and Technology / v.16, no.4, 2017 , pp. 194-200 More about this Journal
Abstract
Stress-corrosion cracking (SCC) of alloy 600 and alloy 800 in 0.5 mol/L thiosulfate solution during constant strain was investigated using electrochemical noise (EN) combined with 3-D microscope techniques. The in-situ morphology observation and EN results indicate that the SCC process could be divided into three stages: (1) passive film stabilization and growth, (2) crack initiation, (3) and crack growth. Power Spectral Density (PSD) and the probability distribution obtained from EN were used as the "fingerprint" to distinguish the different processes. During passive film stabilization and growth, the current noise signals resembled "white noise": when the crack initiated, many transient peaks could be seen in the current noise and the wavelet energy at low frequency as well as the noise resistance decreased. After crack propagation, the noise amplitudes increased, particularly the white noises at low and high frequencies ($W_L$ and $W_H$) in the PSDs. Finally, the detection of metal structure corrosion in a simulated sea splash zone and pipeline corrosion in the atmosphere are established.
Keywords
electrochemical noise; alloy 600; sensor; stress-corrosion cracking;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. W. Staehle and J. A. Gorman, Corrosion, 59, 931 (2003).   DOI
2 M. G. Alvarez, P. Lapitz, and J. Ruzzante, Corros. Sci., 55, 5(2012).   DOI
3 A. Etiemble, H. Idrissi, and L. Roue, Int. J. Hydrogen Energ., 38, 1136 (2013).   DOI
4 L. Calabrese, G. Campanella, and E. Proverbio, Corros. Sci., 73, 161 (2013).   DOI
5 M. Breimesser, S. Ritter, H. P. Seifert, T. Suter, and S. Virtanen, Corros. Sci., 63, 129 (2012).   DOI
6 R. Zhao, Z. Zhang, J. B. Shi, L. Tao, and S. Z. Song, J. Cent. South Univ. T., 17, 13 (2010).   DOI
7 A. A. Oskuie, T. Shahrabi, A. Shahriari, and E. Saebnoori, Corros. Sci., 61, 111 (2012).   DOI
8 G. Du, J. Li, W. K. Wang, C. Jiang, and S. Z. Song, Corros. Sci., 53, 2918 (2011).   DOI
9 J. Kovac, M. Leban, and A. Legat, Electrochim. Acta, 52, 7607 (2007).   DOI
10 J. Kovac, C. Alaux, T. J. Marrow, E. Govekar, and A. Legat, Corros. Sci., 52, 2015 (2010).   DOI
11 D. H. Xia, S. Z. Song, J. H. Wang, J. B. Shi, H. C. Bi, and Z. M. Gao, Electrochem. Commun., 15, 88 (2012).   DOI
12 D. Xia, S. Song, R. Zhu, Y. Behnamian, C. Shen, J. Wang, J. Luo, Y. Lu, and S. Klimas, Electrochim. Acta, 111, 510 (2013).   DOI
13 D. H. Xia, C. Zhou, Y. H. Liu, J. H. Wang, C. W. Fu, K. Wang, and M. Li, Electrochemistry, 81, 262 (2013).   DOI
14 T. Zhang, D. Y. Wang, Y. W. Shao, G. Z. Meng, and F. H. Wang, Corros. Sci., 58, 202 (2012).   DOI
15 M. R. Thakare, J. A. Wharton, R. J. K.Wood, and C. Menger, Wear, 267, 1967 (2009).   DOI
16 J. Macak, P. Sajdl, P. Kucera, R. Novotny, and J. Vosta, Electrochim. Acta, 51, 3566 (2006).   DOI
17 N. Zaveri, R. T. Sun, N. Zufelt, A. H. Zhou, and Y. Q. Chen, Electrochim. Acta, 52, 5795 (2007).   DOI
18 C. Zhou, J. H. Wang, S. Z. Song, D. H. Xia, K. Wang, C. Shen, B. Luo, and J. B. Shi, J. Wuhan Univ. Technol., 28, 367 (2013).   DOI
19 D. H. Xia, S. Z. Song, W. Q. Gong, Y. X. Jiang, Z. M. Gao, and J. H. Wang, J. Food Eng., 113, 11 (2012).   DOI
20 D. H. Xia, J. B. Shi, W. Q. Gong, R. J. Zhou, Z. M. Gao, and J. H. Wang, Electrochemistry, 80, 907 (2012).   DOI
21 A. M. Lafront, F. Safizadeh, E. Ghali, and G. Houlachi, Electrochim. Acta, 55, 2505 (2010).   DOI
22 I. Szenes, G. Meszaros, and B. Lengyel, Electrochim. Acta, 52, 4752 (2007).   DOI
23 X. Jiang, S. Nesic, F. Huet, B. Kinsella, B. Brown, and D. Young, J. Electrochem. Soc., 159, C283 (2012).   DOI
24 M. Shahidi, R. F. Moghaddam, M. R. Gholamhosseinzadeh, and S. M. A. Hosseini, J. Electroanal. Chem., 693, 114 (2013).   DOI
25 F. H. Cao, Z. Zhang, J. X. Su, Y. Y. Shi, and J. Q. Zhang, Electrochim. Acta, 51, 1359 (2006).   DOI
26 A. M. Homborg, E. P. M. van Westing, T. Tinga, X. Zhang, P. J. Oonincx, G. M. Ferrari, J. H. W. de Wit, and J. M. C. Mol, Corros. Sci., 66, 97 (2013).   DOI
27 G. P. Quick, D. A. Eden, and R. J. Jacko, Proc. Corrosion 2001 Conf., p. 123, NACE International Press, Houston (2001).
28 V. Kain, Y. Watanabe, and M. Kobayashi, Proc. Corrosion 2001 Conf., p. 118, NACE International Press, Houston (2001).
29 J. Hickling, D. F. Taylor, and P. L. Andresen, Mater. Corros., 49, 651 (1998).   DOI
30 P. Kucera, J. Macak, P. Sajdl, and R. Novotny, Mater. Corros., 59, 719 (2008).   DOI
31 J. C. Uruchurtu and J. L. Dawson, Corrosion, 43, 19 (1987).   DOI
32 A. Chang and S. Song, J. Chin. Soc. Corr. Pro., 32, 247 (2012).