DOI QR코드

DOI QR Code

Effect of Applied Voltage on the Reliability of Coating Flaw Detection of Pipe with Different Buried Depths

  • Lim, B.T. (Materials Research Center for Energy and Green Technology, School of Materials Science and Engineering, Andong National University) ;
  • Kim, M.G. (Materials Research Center for Energy and Green Technology, School of Materials Science and Engineering, Andong National University) ;
  • Kim, K.T. (Materials Research Center for Energy and Green Technology, School of Materials Science and Engineering, Andong National University) ;
  • Chang, H.Y. (Power Engineering Research Institute, KEPCO E&C) ;
  • Kim, Y.S. (Materials Research Center for Energy and Green Technology, School of Materials Science and Engineering, Andong National University)
  • Received : 2019.12.19
  • Accepted : 2019.12.26
  • Published : 2019.12.31

Abstract

External corrosion control of buried pipe can be achieved by the combination of barrier coating and cathodic protection. Coating damage and deterioration can be induced by many reasons; damage during handling and laying, enhanced failure at low temperatures, failure during commissioning and operation, disbanding due to inadequate surface cleaning, rock penetration during installation and service etc. This work focused on the effect of survey conditions on the reliability of coating flaw detection of buried pipes. The effects of applied voltage and anode location on the detection reliability of coating flaw of buried pipe in soil with the resistivity of ca. 25.8 kΩ·cm were discussed. Higher applied voltage increased the detection reliability, regardless of buried depth, but deeper burial depth reduced the reliability. The location of the anode has influenced on the detection reliability. This behaviour may be induced by the variation of current distribution by the applied voltage and buried depth. From the relationship between the applied voltage and reliability, the needed detection potential to get a desire detection reliability can be calculated to get 100% detection reliability using the derived equation.

Keywords

References

  1. J. G. Kim and Y. W. Kim, Corros. Sci., 43, 2011 (2001). https://doi.org/10.1016/S0010-938X(01)00015-4
  2. I. Gurrappa, J. Mater. Process. Technol., 166, 256 (2005). https://doi.org/10.1016/j.jmatprotec.2004.09.074
  3. E. S. Ibrahim, Electr. Pow. Syst. Res., 52, 9 (1999). https://doi.org/10.1016/S0378-7796(98)00133-3
  4. S. Srikanth, T. S. N. Sankaranarayanan, K. Gopalakrishna, B. R. V. Narasimhan, T. V. K. Das, and S. K. Das, Eng. Fail. Anal., 12, 634 (2005). https://doi.org/10.1016/j.engfailanal.2004.02.006
  5. A. Osella, A. Favetto, and E. Lopez, Appl. Geophys., 38, 219 (1998). https://doi.org/10.1016/S0926-9851(97)00019-0
  6. A. Osella and A. Favetto, Appl. Geophys., 44, 303 (2000). https://doi.org/10.1016/S0926-9851(00)00008-2
  7. I. A. Metwally, H. M. Al-Mandhari, A. Gastli, and Z. Nadir, Eng. Anal. Bound. Elem., 31, 485 (2007). https://doi.org/10.1016/j.enganabound.2006.11.003
  8. L. C. Wrobel and P. Miltiadou, Eng. Anal. Bound. Elem., 28, 267 (2004). https://doi.org/10.1016/S0955-7997(03)00057-2
  9. R. A. Gummow and P. Eng, J. Atmos. Sol.-Terr. Phys., 64, 1755 (2002). https://doi.org/10.1016/S1364-6826(02)00125-6
  10. O. Abootalebi, A. Kermanpur, M. R. Shishesaz, and M. A. Golozar, Corros. Sci., 52, 678 (2010). https://doi.org/10.1016/j.corsci.2009.10.025
  11. S. A. Shipilov and I. L. May, Eng. Fail. Anal., 13, 1159 (2006). https://doi.org/10.1016/j.engfailanal.2005.07.008
  12. D. H. Boteler, L. Trichtchenko, C. Blais, and R. Pirjola, Proc. Corrosion 2013 Conf., p. 2522, ID NACE-2013-2522, NACE International, Orlando, Florida, USA (2013).
  13. A. Osella, A. Favetto, and E. Lopez, Corrosion, 55, 699 (1999). https://doi.org/10.5006/1.3284025
  14. Z. Masilela and J. Pereira, Eng. Fail. Anal., 5, 99 (1998). https://doi.org/10.1016/S1350-6307(98)00006-5
  15. J. H. Park, H. M. Kim, and G. S. Park, J. Korean Magn. Soc., 26, 24 (2016). https://doi.org/10.4283/JKMS.2016.26.1.024
  16. S. L. Shin, G. H. Lee, U. Ahmed, Y. K. Lee, and C. H. Han, J. Hazard. Mater., 342, 279 (2018). https://doi.org/10.1016/j.jhazmat.2017.08.029
  17. Y. D. Ryou, J. J. Kim, and D. K. Kim, J. Korean Inst. Gas, 19, 38 (2015).
  18. J. J. Kim, M. S. Seo, and D. K. Kim, J. Korean Inst. Gas, 18, 66 (2014). https://doi.org/10.7842/kigas.2014.18.5.66
  19. J. O. Jeong, J. K. Yi, and H. J. Kim, J. Korean Soc. Nondestruc. Test., 21, 556 (2001).
  20. Y. D. Ryou, J. H. Lee, Y. D. Jo, and J. J. Kim, J. Korean Inst. Gas, 20, 50 (2016).
  21. K. J. Satsios, D. P. Labridis, and P. S. Dokopoulos, Eur. T. Electr. Power, 8, 193 (1998). https://doi.org/10.1002/etep.4450080307
  22. Y. B. Cho, K. W. Park, K. S. Jeon, H. S. Song, D. S. Won, S. M. Lee, and Y. T. Kho, Proc. International Pipeline Conf., p. 463, Paper No. IPC1996-1851, ASME International, Calgary, Alberta, CA (1996). https://doi.org/10.1115/ PC1996-1851
  23. M. Magura and J. Brodniansky, Procedia Engineer., 40, 50 (2012). https://doi.org/10.1016/j.proeng.2012.07.054
  24. Y. B. Cho, K. W. Park, K. S. Cheon, H. S. Song, D. S. Won, S. M. Lee, and Y. T. Kho, Corros. Sci. Tech., 24, 167 (1995).
  25. A. Smart, G. Lupia, A. Iuga. and J. Cavallo, APEC Validation for Reasonable Assurance of Buried Piping Integrity, EPRI (2014).
  26. H. Y. Chang, K. T. Kim, B. T. Lim, K. S. Kim, J. W. Kim, H. B. Park, and Y. S. Kim, Corros. Sci. Tech., 16, 115 (2017). https://doi.org/10.14773/cst.2017.16.3.115
  27. H. Y. Chang, H. B. Park, K. T. Kim, Y. S. Kim, and Y. Y. Jang, Trans. Korean Soc. Press. Vessel. Pip., 11, 61 (2015).
  28. K. T. Kim, H. W. Kim, Y. S. Kim, H. Y. Chang, B. T. Lim, and H. B. Park, Corros. Sci. Tech., 14, 12 (2015). https://doi.org/10.14773/cst.2015.14.1.12