• Title/Summary/Keyword: Corrosion Defect

Search Result 157, Processing Time 0.024 seconds

Study of High Speed Steel AISI M4 Powder Deposition using Direct Energy Deposition Process (DED 기술을 이용한 고속도 공구강 M4 분말 적층에 관한 연구)

  • Lee, E.M.;Shin, G.W.;Lee, K.Y.;Yoon, H.S.;Shim, D.S.
    • Transactions of Materials Processing
    • /
    • v.25 no.6
    • /
    • pp.353-358
    • /
    • 2016
  • Direct energy deposition (DED) is an additive manufacturing technique that involves the melting of metal powder with a high-powered laser beam and is used to build a variety of components. In recent year, it can be widely used in order to produce hard, wear resistant and/or corrosion resistant surface layers of metallic mechanical parts, such as dies and molds. For the purpose of the hardfacing to achieve high wear resistance and hardness, application of high speed steel (HSS) can be expected to improve the tool life. During the DED process using the high-carbon steel, however, defects (delamination or cracking) can be induced by rapid solidification of the molten powder. Thus, substrate preheating is generally adopted to reduce the deposition defect. While the substrate preheating ensures defect-free deposition, it is important to select the optimal preheating temperature since it also affects the microstructure evolution and mechanical properties. In this study, AISI M4 powder was deposited on the AISI 1045 substrate preheated at different temperatures (room temperature to $500^{\circ}C$). In addition, the micro-hardness distribution, cooling rates, and microstructures of the deposited layers were investigated in order to observe the influence of the substrate preheating on the mechanical and metallurgical properties.

EWIS Reliability Analysis of Aging Fighter Aircraft through Teardown Inspection (완전분해 점검을 통한 장기운영 전투기 전기배선시스템의 신뢰성분석)

  • Lee, Hoyong
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.26 no.4
    • /
    • pp.116-121
    • /
    • 2018
  • According to the incresement of aging aircraft, Republic of Korea Air Force (RoKAF) conducted a teardown inspection of aircraft's EWIS (electrical wiring interconnection system) to determine the status of deterioration and the influence of failure occurrences due to it. The inspected aircraft were the retired fighter jets that had been used for more than 40 years. By analyzing defect type and the defect tendency, RoKAF can establish the necessary measures for the usage extension of their fleet and furthermore, the analysis results can be used as a basic data for the preparation of it's aircraft aging. EWIS inspection was done throughout careful visual inspection technique by removing all the ducts and pipes located in the fuselage and wings. For the aircraft wiring where no damage was found, the elongation tests were performed to determine the deterioration of wiring according to the location of the aircraft. The connectors, which is the main cause of intermittent failure, were completely disassembled and inspected for internal damage such as corrosion, abrasion, and traces of foreign objects. The detected defects were classified into 4 severity levels based on the type of damage, and the classified defects were weighted according to the criticality which may affects to it's system to establish the action plan.

Experimental Study on Rupturing of Artificial Flaw of Pipes for Life Prediction of Underground High Pressure Gas Pipes (지하매설 고압가스배관의 수명예측을 위한 인위결함 배관의 파열실험)

  • Lee, Kyung-eun;Kim, Jeong Hwan;Ha, Yu-jin;Kil, Seong-Hee;Jo, Young-do;Moon, Jong-Sam
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.5
    • /
    • pp.62-71
    • /
    • 2018
  • According to own investigation conducted by Korea Gas Safety Corporation Gas Safety Research Institute in 2017, the length of underground pipes in domestic high-pressure gas pipelines is approximately 770km, of which 84% is buried in Ulsan and Yeosu industrial complexes. In particular, 56% of underground pipelines have been in operation for more than 20 years. This suggests urgent management of buried high pressure gas pipelines. PHMSA in US and EGIG in Europe, major causes of accidents in buried gas pipelines are reported as third party damage, external corrosion and loss of pipe wall thickness. Therefore, it is important to evaluate whether the defects affect the remaining life of the pipe when defects occur in the pipe. DNV and ASME have evaluated the residual strength of pipelines through the hydraulic rupture test using pipe specimens with artifact flaws. Once the operating pressure is known through the residual strength of the pipe, the wall thickness at the point at which the pipe ruptures is calculated. If we know the accurate rate of corrosion growth, we can predict the remaining life of pipe. In the study, we carried out experiments with A53 Grade.B and A106 Grade.B, which account for 80% of domestic buried pipes. In order to modify the existing model equation, specimens with a defect depth of 80% to 90% was tested, and a formula expressing the relationship between defect and residual strength was made.

Application of Laser Ultrasonic Technique for Nondestructive Evaluation of Wall Thinning in Pipe (배관부 감육 손상의 비파괴 평가를 위한 레이저 초음파 기술 적용)

  • Hong, Kyung-Min;Kang, Young-June;Park, Nak-Kyu;Yoon, Suk-Bum
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.4
    • /
    • pp.361-367
    • /
    • 2013
  • Many of the nuclear power plant pipe is used in high temperature and high pressure environment. Wall thinning frequently caused by the corrosion. These wall thinning in pipe is expected gradually increase as nuclear power become superannuated. Therefore there is need to evaluate wall thinning in pipe and corrosion defect by non-destructive method to prevent the accident of the nuclear power facility due to pipe corrosion. Especially for real-time assessment of the wall thinning that occurs in nuclear power plant pipe, the laser ultrasonic technology can be measured even in hard-to-reach areas, beyond the limits of earlier existing contact methods. In this study, the optical method using laser was applied for non-destructive and non-contact evaluation. Ultrasonic signals was acquired through generating ultrasonic by pulse laser and using laser interferometer. First the ultrasonic signal was detected in no wall thinning in pipe, then a longitudinal wave velocity was measured inside of pipe. Artificial wall thinning specimen compared to 20, 30, 40 and 50% of thickness of the pipe was produced and the longitudinal wave velocity was measured. It was possible to evaluate quantitatively the wall thinning area(internal defect depth) cause it was able to calculate the thickness of each specimen using measured longitudinal wave velocity.

A Study on the Development of the Repair Standards for Underground Pipelines Carrying Natural Gas (도시가스 매설배관 보수기준 개발에 관한 연구)

  • Ryou, Young-Don;Lee, Jin-Han;Jo, Young-Do
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.4
    • /
    • pp.33-43
    • /
    • 2016
  • Grinding, weld deposition, type A sleeve, type B sleeve, composite sleeve, hot tapping and clamp are used as the method to repair the buried pipelines in the United States, UK and Europe. In the event of defect to the pipeline, they have repaired the pipeline through the fitness-for-service assessments. In addition, they have guidelines for the possible repair methods to apply to each type of damage, which is occurred due to the 3rd party construction or corrosion. According to the KGS FS551, Safety Validation in Detail including ECDA(External Corrosion Direct Assessment) as one method of integrity management should be carried out for the old pipeline which supply natural gas as the middle pressure in Korea. Where a defect on the pipelines is found, on the result of Safety Validation in Detail, the pipelines should be repaired or replaced by new piping. However, there are no guidelines or regulations regarding the repair and reinforcement of pipeline, so that, cutting the damaged pipeline and replacing it as a segment of new pipe is the only way in Korea until now. We have suggested pipeline repair methods including type A, B sleeve, composite sleeve, after the survey of foreign repair method and standards including the method of United States and the United Kingdom, and after analysis of the results on pipeline repair test including type A, type B sleeve and composite sleeve.

Application of Laser-based Ultrasonic Technique for Evaluation of Corrosion and Defects in Pipeline (배관부 부식 및 결함 평가를 위한 레이저 유도 초음파 적용 기술)

  • Choi, Sang-Woo;Lee, Joon-Hyun;Cho, Youn-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.2
    • /
    • pp.95-102
    • /
    • 2005
  • There are many tube and pipeline in nuclear power plant under high temperature and high pressure. Erosion and corrosion defects were expected on these tube and pipe-line by environmental and mechanical factors. These erosion and corrosion defects ran be evaluated by ultrasonic technique. In these study, Scanning Laser Source(SLS) technique was applied to detect defect and construct image. This technique also makes detection possible on rough and curved surfaces such as tube and pipe-line by scanning. Conventional ultrasonic scanning technique requires immersion of specimen or water jet for transferring ultrasonic wave between transducer and specimen. However, this SLS technique does not need contacting and couplant to generate surface wave and to get flaw images. Therefore, this SLS technique has several advantages, for complicated production inspection, non-contact, remote from specimen, and high resolution. In this study, SLS images were obtained with various conditions of generation laser ultrasound and receiving in order to enhance detectability of flaws on the tube. Stress corrosion cracks were produced on tube and images of stress corrosion cracks were constructed by using SLS technique.

A Prediction Method of the Gas Pipeline Failure Using In-line Inspection and Corrosion Defect Clustering (In-line Inspection과 부식결함 클러스터링을 이용한 가스배관의 고장예측)

  • Kim, Seong-Jun;Choe, Byung Hak;Kim, Woosik
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.6
    • /
    • pp.651-656
    • /
    • 2014
  • Corrosion has a significant influence upon the reliability assessment and the maintenance planning of gas pipeline. Corrosion defects occurred on the underground pipeline can be obtained by conducting periodic in-line inspection (ILI). However, little study has been done for practical use of ILI data. This paper deals with remaining lifetime prediction of the gas pipeline in the presence of corrosion defects. Because a pipeline parameter includes uncertainty in its operation, a probabilistic approach is adopted in this paper. A pipeline fails when its operating pressure is larger than the pipe failure pressure. In order to estimate the failure probability, this paper uses First Order Reliability Method (FORM) which is popular in the field of structural engineering. A well-known Battelle code is chosen as the computational model for the pipe failure pressure. This paper develops a Matlab GUI for illustrating failure probability predictions Our result indicates that clustering of corrosion defects is helpful for improving a prediction accuracy and preventing an unnecessary maintenance.

Influence of Plasma Corrosion Resistance of Y2O3 Coated Parts by Cleaning Process (세정공정에 따른 Y2O3 코팅부품의 내플라즈마성 영향)

  • Kim, Minjoong;Shin, Jae-Soo;Yun, Ju-Young
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.6
    • /
    • pp.365-370
    • /
    • 2021
  • In this research, we proceeded with research on plasma resistance of the cleaning process of APS(Atmospheric Plasma Spray)-Y2O3 coated parts used for semiconductor and display plasma process equipment. CF4, O2, and Ar mixed gas were used for the plasma environment, and respective alconox, surfactant, and piranha solution was used for the cleaning process. After APS-Y2O3 was exposed to CF4 plasma, the surface changed from Y2O3 to YF3 and a large amount of carbon was deposited. For this reason, the plasma corrosion resistance was lowered and contamination particles were generated. We performed a cleaning process to remove the defect-inducing surface YF3 layer and carbon layer. Among three cleaning solutions, the piranha cleaning process had the highest detergency and the alconox cleaning process had the lowest detergency. Such results could be confirmed through the etching amount, morphology, composition, and accumulated contamination particle analysis results. Piranha cleaning process showed the highest detergency, but due to the very large thickness reduction, the base metal was exposed and a large number of contaminated particles were generated. In contrast, the surfactant cleaning process exhibit excellent properties in terms of surface detergency, etching amount, and accumulated contamination particle analysis.

Effects of Surface Machining by a Lathe on Microstructure of Near Surface Layer and Corrosion Behavior of SA182 Grade 304 Stainless Steel in Simulated Primary Water

  • Zhang, Zhiming;Wang, Jianqiu;Han, En-hou;Ke, Wei
    • Corrosion Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.1-7
    • /
    • 2019
  • To find proper lathe machining parameters for SA182 Grade 304 stainless steel (SS), six kinds of samples with different machining surface states were prepared using a lathe. Surface morphologies and microstructures of near surface deformed layers on different samples were analysed. Surface morphologies and chemical composition of oxide films formed on different samples in simulated primary water with $100{\mu}g/L\;O_2$ at $310^{\circ}C$ were characterized. Results showed that surface roughness was mainly affected by lathe feed. Surface machining caused grain refinement at the top layer. A severely deformed layer with different thicknesses formed on all samples. In addition to high defect density caused by surface deformation, phase transformation, residual stress, and strain also affected the oxidation behaviour of SA182 Grade 304 SS in the test solution. Machining parameters used for # 4 (feed, 0.15 mm/r; back engagement, 2 mm; cutting speed, 114.86 m/min) and # 6 (feed,0.20 mm/r; back engagement, 1 mm; cutting speed, 73.01 m/min) samples were found to be proper for lathe machining of SA182 Grade 304 SS.

AE Characteristic of Polyethylene Pipe under various defects (다양한 결함에 대한 폴리에틸렌 배관의 음향방출 특성)

  • Nam Ki Woo;Lee Si Yoon;Ahn Seok Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.8 no.3 s.24
    • /
    • pp.1-7
    • /
    • 2004
  • The polyethylene pipe can use semi-permanent because of the high corrosion resistance with chemical stability. In addition to, there is the merit that is an easy to establish and to maintain. However, as the reason that it is simply degraded when the polyethylene pipe was exposed to the outside, mainly it is used to lay under the ground with low-pressure gas transportation pipe. In this study, the nondestructive evaluation method was used to maintain the integrity of the polyethylene pipe. We simulated the various defects on the polyethylene pipes, and then the AE signal occurred according to the impact test of steel ball was evaluated by the acoustic emission method. From the results, the waveform and dominant frequency could be distinguishing from the defect shapes of polyethylene pipe. Especially, in the case of notch defect, the AE signals occur different by the angle and depth of the notch.

  • PDF