• Title/Summary/Keyword: Core-shell-shell structure

Search Result 267, Processing Time 0.03 seconds

Preparation of Alkyl Acrylate and Functional Monomer Multi Core-Shell Composite Particles (알킬 아크릴레이트와 관능성 단량체계 다중 Core-Shell 복합입자의 제조)

  • Choi, Sung-Il;Cho, Dae-Hoon;Seul, Soo-Duk
    • Journal of Adhesion and Interface
    • /
    • v.14 no.1
    • /
    • pp.1-12
    • /
    • 2013
  • Multi core-shell composite particles were prepared by the water-born emulsion polymerization of various core monomers such as methyl methacrylate (MMA), ethyl methacrylate (EMA) and shell monomers such as MMA, EMA, 2-hydroxyl ethyl methacrylate (2-HEMA), glycidyl methacrylate (GMA) and methacrylic acid (MAA) in the presence of different concentrations of sodium dodecyl benzene sulfonate (SDBS). The following conclusions are drawn from the conversion, particle size and distribution, average molecular weight, molecular structure, glass transition temperature with DSC, contact angle after plasma treatment, tensile strength and isothermal decomposition kinetics. In the case of the concentration of 0.02 wt% SDBS, the conversion of MMA core-(EMA/GMA) shell composite particles was excellent as 98.5%. In the case of the concentration of 0.03 wt% SDBS, the particle size of EMA core-(MMA/GMA) shell composite particles was high as $0.48{\mu}m$. We confirmed that 3 points of glass transition temperatures appear for multi core-shell composite particles compared to 1~2 points of glass transition temperatures appear for general copolymer particles. Overall, the adhesion strength of shell composite particles was in the order of EMA/MAA > EMA/2-HEMA > EMA/GMA.

One-pot synthesis of PdAu bimetallic composite nanoparticles and their catalytic activities for hydrogen peroxide generation

  • Xiao, Xiangyun;Kang, Tae-Uook;Nam, Hyobin;Bhang, Suk Ho;Lee, Seung Yong;Ahn, Jae-Pyung;Yu, Taekyung
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.12
    • /
    • pp.2379-2383
    • /
    • 2018
  • We report a facile one-pot aqueous-phase synthesis of PdAu bimetallic nanoparticles with different Pd/Au ratio. The synthesis was conducted by co-reduction of Pd and Au precursor using ascorbic acid as a reducing agent and in the presence of polyallylamine hydrochloride (PAH). By high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) and energy-dispersive X-ray spectrometry (EDS) analyses, we found that the synthesized nanoparticles had an onion-like core/shell/shell/shell structure with Au-rich core, Pd-rich shell, Au-rich shell, and Pd shell, respectively. We also investigated the catalytic performance of the synthesized PdAu nanoparticles toward hydrogen peroxide generation reaction.

Development of Functional Microsphere( II ) - Surface Modification and Properties of EVA Microsphere - (기능성 microsphere의 개발(II) - EVA Microsphere의 표면개질과 특성 -)

  • Kim Hea-In;Park Heung-Sup;Park Soo-Min
    • Textile Coloration and Finishing
    • /
    • v.17 no.3 s.82
    • /
    • pp.26-33
    • /
    • 2005
  • EVA microsphere was prepared by a thermally induced phase separation. EVAL microsphere was made by a saponification on sheath of EVA microsphere. And microcapsule with EVA core-PU shell structure was synthesized by interfacial polymerization using diisocyanates with PEG in gelatin aqueous solution as the stabilizing agent. The effects of chemical structure of diisocyanate on the average particle size and distribution, morphology, color strength and friction fastness of core-shell particles were investigated to design microcapsule. The friction fastness of the fabrics printed with EVA core-PU shell microcapsules had the 4-5 grade.

Synthesis of Core-shell Copper nanowire with Reducible Copper Lactate Shell and its Application

  • Hwnag, Hyewon;Kim, Areum;Zhong, Zhaoyang;Kwon, Hyeokchan;Moon, Jooho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.430.1-430.1
    • /
    • 2016
  • We present the concept of reducible fugitive material that conformally surrounds core Cu nanowire (NW) to fabricate transparent conducting electrode (TCE). Reducing atmosphere can corrodes/erodes the underlying/surrounding layers and might cause undesirable reactions such impurity doing and contamination, so that hydrogen-/forming gas based annealing is impractical to make device. In this regards, we introduce novel reducible shell conformally surrounding indivial CuNW to provide a protection against the oxidation when exposed to both air and solvent. Uniform copper lactate shell formation is readily achievable by injecting lactic acid to the CuNW dispersion as the acid reacts with the surface oxide/hydroxide or pure copper. Cu lactate shell prevents the core CuNW from the oxidation during the storage and/or film formation, so that the core-shell CuNW maintains without signficant oxidation for long time. Upon simple thermal annealing under vacuum or in nitrogen atmosphere, the Cu lactate shell is easily decomposed to pure Cu, providing an effective way to produce pure CuNW network TCE with typically sheet resistance of $19.8{\Omega}/sq$ and optical transmittance of 85.5% at 550 nm. Our reducible copper lactate core-shell Cu nanowires have the great advantage in fabrication of device such as composite transparent electrodes or solar cells.

  • PDF

Fabrication of Core-Shell Structure of Ni/Au Layer on PMMA Micro-Ball for Flexible Electronics

  • Hong, Sung-Jei;Jeong, Gyu-Wan;Han, Jeong-In
    • Current Photovoltaic Research
    • /
    • v.4 no.4
    • /
    • pp.140-144
    • /
    • 2016
  • In this paper, core-shell structure of nickel/gold (Ni/Au) conductive layer on poly-methyl-methacrylate (PMMA) micro-ball was fabricated and its conduction property was investigated. Firstly, PMMA micro-ball was synthesized by using dispersion polymerization method. Size of the ball was $2.8{\mu}m$ within ${\pm}7%$ deviation, and appropriate elastic deformation of the PMMA micro-ball ranging from 31 to 39% was achieved under 3 kg pressure. Also, 200 nm thick Ni/Au conductive layer was fabricated on the PMMA micro-ball by uniformly depositing with electroless-plating. Adhesion of the conductive layer was optimized with help of surface pre-treatment, and the layer adhered without peeling-off despite of thermal expansion by collision with accelerated electrons. Composite paste containing core-shell structured particles well cured at low temperature of $130^{\circ}C$ while pressing the test chip onto the substrate to make electrical contact, and electrical resistance of the conductive layer showed stable behavior of about $6.0{\Omega}$. Thus, it was known that core-shell structured particle of the Ni/Au conductive layer on PMMA micro-ball was feasible to flexible electronics.

Synthesis of Au@TiO2 Core-shell Nanoparticle-decorated rGO Nanocomposite and its NO2 Sensing Properties

  • Kumar Naik, Gautam;Yu, Yeon Tae
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.225-230
    • /
    • 2019
  • $Au@TiO_2$ core-shell decorated rGO nanocomposite (NC) was prepared using a simple solvothermal method followed by heat treatment for gas sensor application. The crystal structure and morphology of the composites were characterized by X-ray powder diffraction and transmission electron microscopy, respectively. The $NO_2$ sensing response of the $Au@TiO_2/rGO$ NC was tested at operating temperatures from $250^{\circ}C$ to $500^{\circ}C$, and was compared with those of the bare rGO and $Au@TiO_2$ core-shell NPs. The $Au@TiO_2/rGO$ NC-based sensor showed a far higher response than the rGO or $Au@TiO_2$ core-shell based sensors, with the maximum response detected when the operating temperature was $400^{\circ}C$. This improved response was due to the high rGO gas absorption capability for $NO_2$ gas and the catalytic effect of $Au@TiO_2$ core-shell NPs in oxidizing $NO_2$ to $NO_3$.

Synthesis and Characterization of Spherical SiO2@Y2O3 : Eu Core-Shell Composite Phosphors (구형 SiO2@Y2O3: Eu 코어-쉘 복합체 형광체 합성 및 특성)

  • Song, Woo-Seuk;Yang, Hee-Sun
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.5
    • /
    • pp.447-453
    • /
    • 2011
  • The monodisperse spherical $SiO_2$ particles were overcoated with $Y_2O_3:Eu^{3+}$ phosphor layers via a Pechini sol-gel process and the resulting $SiO_2@Y_2O_3:Eu^{3+}$ core-shell phosphors were subsequently annealed at $800^{\circ}C$ at an ambient atmosphere. The crystallographic structure, morphology, and luminescent property of core-shell structured $SiO_2@Y_2O_3:Eu^{3+}$ phosphors were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and photoluminescence (PL). The spherical, nonagglomerated $SiO_2$ particles prepared by a Stober method exhibited a relatively narrow size distribution in the range of 260-300 nm. The thickness of phosphor shell layer in the core-shell particles can be facilely controlled by varying the coating number of $Y_2O_3:Eu^{3+}$ phosphors. The core-shell structured $SiO_2@Y_2O_3:Eu^{3+}$ phosphors showed a strong red emission, which was dominated by the $^5D_0-^7F_2$ transition (610 nm) of $Eu^{3+}$ ion under the ultraviolet excitation (263 nm). The PL emission properties of $SiO_2@Y_2O_3:Eu^{3+}$ phosphors were also compared with pure $Y_2O_3:Eu^{3+}$ nanophosphors.

Synthesis and Characterization of Au@TiO2 Core-Shell Microspheres (Au@TiO2 코어쉘 미세 입자의 합성 및 특성 평가)

  • Kim, Sun-Geum;Jang, Ha Jun;Jang, Jaewon;Shim, Jae-Hyun;Baek, Sung-June
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.4
    • /
    • pp.392-397
    • /
    • 2022
  • We present the structural and optical properties of Au@TiO2 core-shell microsphere structure prepared by a hydrothermal synthesis method. As a way to improve the efficiency of organic solar cells, the Au@TiO2 core-shell microsphere was synthesized to use the local surface plasmon resonance (LSPR) phenomenon. The synthesized results were confirmed to have the Au@TiO2 core-shell structure using a high-resolution transmission electron microscopy. An absorption was observed to occur at 527 nm belonging to the visible light region using a visible light spectroscopy, which supports the LSPR phenomenon. We suggest that the Au@TiO2 core-shell microsphere is highly likely to be applied to organic solar cells including dye-sensitized solar cells. In addition, we expect it to be widely used not only in the energy but also in the bio as well as in the environmental fields.

Three-dimensional porous films consisting of copper@cobalt oxide core-shell dendrites for high-capacity lithium secondary batteries (리튬이차전지용 고용량 음극을 위한 구리@코발트산화물 코어-쉘 수지상 기반 3차원 다공성 박막)

  • So-Young Joo;Yunju Choi;Woo-Sung Choi;Heon-Cheol Shin
    • Journal of Surface Science and Engineering
    • /
    • v.56 no.1
    • /
    • pp.104-114
    • /
    • 2023
  • Three dimensional (3D) porous structures consisting of Cu@CoO core-shell-type nano-dendrites were synthesized and tested as the anode materials in lithium secondary batteries. For this purpose, first, the 3D porous films comprising Cu@Co core-shell-type nano-dendrites with various thicknesses were fabricated through the electrochemical co-deposition of Cu and Co. Then the Co shells were selectively anodized to form Co hydroxides, which was finally dehydrated to get Cu@CoO nanodendrites. The resulting electrodes exhibited very high reversible specific capacity almost 1.4~2.4 times the theoretical capacity of commercial graphite, and excellent capacity retention (~90%@50th cycle) as compared with those of the existing transition metal oxides. From the analysis of the cumulative irreversible capacity and morphology change during charge/discharge cycling, it proved that the excellent capacity retention was attributed to the unique structural feature of our core-shell structure where only the thin CoO shell participates in the lithium storage. In addition, our electrodes showed a superb rate performance (70.5%@10.8 C-rate), most likely due to the open porous structure of 3D films, large surface area thanks to the dendritic structure, and fast electron transport through Cu core network.

Effect of Shell Structure of Artificial Lightweight Aggregates on the Emission Rate of Absorbed Water (인공경량골재의 표피층 구조가 흡수된 물의 방출속도에 미치는 영향)

  • Kang, Seung-Gu
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.11
    • /
    • pp.750-754
    • /
    • 2008
  • The artificial aggregates with dense surface layer (shell) was fabricated and the dependence of water emission rate upon the shell structures was studied. The EAF dust containing many flux components and waste white clay with ignition loss of above 48% were used as for liquid phase and gas forming agents during a sintering process respectively. In addition, the shell structure was modified with various processes and the modification effect on water emission rate was analyzed. The pores under $10{\mu}m$ were found in the sintered artificial light aggregates and disappeared by incorporating to a bigger pore during re-sintering. The water emission rate in an initial step depended on a void content of aggregates filled in a bottle rather than a shell structure. But, after 7 days where the water emission of the aggregate with a shell is above 40%, the shell of aggregates suppressed the water emission. The core of aggregates was exposed and most shell was lost when crushed to smaller size so, the ability for suppressing water emission of the crushed aggregates decreased. The activation energy for the water emission was $3.46{\pm}0.25{\times}10^{-1}$J/mol for the most specimens showing that the activation energy is irrelevant to the pore size distribution and shell structure.