Browse > Article
http://dx.doi.org/10.4313/JKEM.2022.35.4.12

Synthesis and Characterization of Au@TiO2 Core-Shell Microspheres  

Kim, Sun-Geum (School of Electronics and Computer Engineering, Chonnam National University)
Jang, Ha Jun (Department of Sustainable Energy Engineering, Dongshin University)
Jang, Jaewon (KEPCO Research Institute, Korea Electric Power Corporation (KEPCO))
Shim, Jae-Hyun (Department of Electrical & Electronic Materials Engineering, Dongshin University)
Baek, Sung-June (School of Electronics and Computer Engineering, Chonnam National University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.35, no.4, 2022 , pp. 392-397 More about this Journal
Abstract
We present the structural and optical properties of Au@TiO2 core-shell microsphere structure prepared by a hydrothermal synthesis method. As a way to improve the efficiency of organic solar cells, the Au@TiO2 core-shell microsphere was synthesized to use the local surface plasmon resonance (LSPR) phenomenon. The synthesized results were confirmed to have the Au@TiO2 core-shell structure using a high-resolution transmission electron microscopy. An absorption was observed to occur at 527 nm belonging to the visible light region using a visible light spectroscopy, which supports the LSPR phenomenon. We suggest that the Au@TiO2 core-shell microsphere is highly likely to be applied to organic solar cells including dye-sensitized solar cells. In addition, we expect it to be widely used not only in the energy but also in the bio as well as in the environmental fields.
Keywords
$Au@TiO_2$ core-shell; Noble metal; Local surface plasmon resonance (LSPR); Microsphere structure; Hydrothermal synthesis;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 P. Yu, Y. Yao, J. Wu, X. Niu, A. L. Rogach, and Z. Wang, Sci. Rep., 7, 7696 (2017). [DOI: https://doi.org/10.1038/s41598-017-08077-9]   DOI
2 D. Y. Kim, Polym. Sci. Technol., 24, 269 (2013).
3 Z. Lin, X. Wang, J. Liu, Z. Tian, L. Dai, B. He, C. Han, Y. Wu, Z. Zeng, and Z. Hu, Nanoscale, 7, 4114 (2015). [DOI: https://doi.org/10.1039/C4NR06929C]   DOI
4 J. Qi, X. Dang, P. T. Hammond, and A. M. Belcher, ACS Nano, 5, 7108 (2011). [DOI: https://doi.org/10.1021/nn201808g]   DOI
5 Y. H. Jang, Y. J. Jang, S. T. Kochuveedu, M. Byun, Z. Lin, and D. H. Kim, Nanoscale, 6, 1823 (2014). [DOI: https://doi.org/10.1039/c3nr05012b]   DOI
6 G. K. Naik and Y. T. Yu, J. Sens. Sci. Technol., 28, 225 (2019). [DOI: https://doi.org/10.5369/JSST.2019.28.4.225]   DOI
7 S. Liu, S. Q. Bai, Y. Zheng, K. W. Shah, and M. Y. Han, ChemCatChem, 4, 1462 (2012). [DOI: https://doi.org/10.1002/cctc.201200264]   DOI
8 H. Y. Jung and K. J. Hong, J. Korean Inst. Electr. Electron. Mater. Eng., 31, 34 (2018). [DOI: https://doi.org/10.4313/JKEM.2018.31.1.34]   DOI
9 M. Jakob, H. Levanon, and P. V. Kamat, Nano Lett., 3, 353 (2003). [DOI: https://doi.org/10.1021/nl0340071]   DOI
10 C. P. Sajan, S. Wageh, A. A. Al-Ghamdi, J. Yu, and S. Cao, Nano Res., 9, 3 (2016). [DOI: https://doi.org/10.1007/s12274-015-0919-3]   DOI
11 H. J. Lee, Y. G. Park, S. H. Lee, and J. H. Park, Korean Chem. Eng. Res., 56, 156 (2018). [DOI: https://doi.org/10.9713/kcer.2018.56.2.156]   DOI
12 D. Y. Kim, W. Li, Y. Ma, T. Yu, Z. Y. Li, O. O. Park, and Y. Xia, Chem. Eur. J., 17, 4759 (2011). [DOI: https://doi.org/10.1002/chem.201100365]   DOI
13 S. F. Shaikh, B. G. Ghule, U. T. Nakate, P. V. Shinde, S. U. Ekar, C. O'Dwyer, K. H. Kim, and R. S. Mane, Sci. Rep., 8, 11016 (2018). [DOI: https://doi.org/10.1038/s41598-018-29363-0]   DOI
14 M. Cargnello, T. R. Gordon, and C. B. Murray, Chem. Rev., 114, 9319 (2014). [DOI: https://doi.org/10.1021/cr500170p]   DOI
15 G. Geng, P. Chen, B. Guan, Y. Liu, C. Yang, N. Wangb, and M. Liu, RSC Adv., 7, 51838 (2017). [DOI: https://doi.org/10.1039/c7ra11188f]   DOI
16 T. Tachikawa, S. Yamashita, and T. Majima, J. Am. Chem. Soc., 133, 7197 (2011). [DOI: https://doi.org/10.1021/ja201415j]   DOI
17 M. D. Brown, T. Suteewong, R.S.S. Kumar, V. D'Innocenzo, A. Petrozza, M. M. Lee, U. Wiesner, and H. J. Snaith, Nano Lett., 11, 438 (2011). [DOI: https://doi.org/10.1021/nl1031106]   DOI
18 T. M. Chen, G. Y. Xu, H. Ren, H. Zhang, Z. Q. Tian, and J. F. Li, Nanoscale Adv., 1, 4522 (2019). [DOI: https://doi.org/10.1039/c9na00548j]   DOI
19 H. Y. Yang, S. H. Lee, H. M. Kim, X. H. Pham, E. Hahm, E. J. Kang, T. H. Kim, Y. Ha, B. H. Jun, and W. Y. Rho, J. Ind. Eng. Chem., 80, 311 (2019). [DOI: https://doi.org/10.1016/j.jiec.2019.08.009]   DOI
20 M. Taheri, F. Hajiesmaeilbaigi, A. S. Motamedi, and Y. Golian, Laser Phys., 25, 065901 (2015). [DOI: https://doi.org/10.1088/1054-660X/25/6/065901]   DOI