Browse > Article
http://dx.doi.org/10.17702/jai.2013.14.1.001

Preparation of Alkyl Acrylate and Functional Monomer Multi Core-Shell Composite Particles  

Choi, Sung-Il (Department of Chemical Engineering, Dong-A University)
Cho, Dae-Hoon (Department of Chemical Engineering, Dong-A University)
Seul, Soo-Duk (Department of Chemical Engineering, Dong-A University)
Publication Information
Journal of Adhesion and Interface / v.14, no.1, 2013 , pp. 1-12 More about this Journal
Abstract
Multi core-shell composite particles were prepared by the water-born emulsion polymerization of various core monomers such as methyl methacrylate (MMA), ethyl methacrylate (EMA) and shell monomers such as MMA, EMA, 2-hydroxyl ethyl methacrylate (2-HEMA), glycidyl methacrylate (GMA) and methacrylic acid (MAA) in the presence of different concentrations of sodium dodecyl benzene sulfonate (SDBS). The following conclusions are drawn from the conversion, particle size and distribution, average molecular weight, molecular structure, glass transition temperature with DSC, contact angle after plasma treatment, tensile strength and isothermal decomposition kinetics. In the case of the concentration of 0.02 wt% SDBS, the conversion of MMA core-(EMA/GMA) shell composite particles was excellent as 98.5%. In the case of the concentration of 0.03 wt% SDBS, the particle size of EMA core-(MMA/GMA) shell composite particles was high as $0.48{\mu}m$. We confirmed that 3 points of glass transition temperatures appear for multi core-shell composite particles compared to 1~2 points of glass transition temperatures appear for general copolymer particles. Overall, the adhesion strength of shell composite particles was in the order of EMA/MAA > EMA/2-HEMA > EMA/GMA.
Keywords
multi core-shell composite particles; water-born emulsion polymerization; isothermal decomposition kinetics; tensile strength; glass transition temperature;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Y. Nakamura, H. Tabata, H. Suzuki, K. Iko, M. Okubo, and T. Matsumoto, J. Appl. Polym. Sci., 32, 4865 (1986).   DOI   ScienceOn
2 S. D. Seul, Korean Chem. Eng. Res., 49, 557 (2010).
3 M. S. Kim and S. D. Seul, Polymer (Korea), 33, 232 (2009).
4 K. Ito, J. Polym. Sci. Polym. Part A-1, 10, 1481 (1972).
5 S. D. Seul, J. Adhesion and Interface, 11, 3 (2010).
6 D. H. Cho, S. I. Choi, H. M. Go, and S. D. Seul, J. Adhesion and Interface, 12, 1 (2011).
7 A. C. Nuessle, Chem. Ind. (London), 1580 (1966).
8 Y. S. Jung, S. K. Min, and S. D. Seul, J. Adhesion and Interface, 10, 4 (2009).
9 D. H. Cho, S. I. Choi, and S. D. Seul, J. Adhesion and Interface, 13, 2 (2012).
10 C. E. Rehberg and C. H. Fisher, J. Am. Chem. Soc., 66, 1203 (1944).   DOI
11 D. W. Aubrey and S. J. Ginosatics, J. Adhes., 12, 189 (1981).   DOI   ScienceOn
12 H. P. Brown, Rubber Chem. Technol., 36, 931 (1963).   DOI
13 K. Cho, Polymer, 39, 14 (1988).
14 T. O. Ahn, T. W. Hwang, and J. Y. Jho, Polymer, 21, 290 (1997).
15 A. J. Backhouse, U. S. Patent, 4, 403, 003 (1983).
16 T. R. Paxton, J. Polym. Sci., 46, 1387 (1992).
17 J. N. Goodier, J. Appl. Mech., 55, 39 (1993).
18 D. H. Sim and S. D. Seul, Polymer, 32, 276 (2008).
19 D. H. Sim, J. E. Ban, M. S. Kim, and S. D. Seul, Polymer, 32, 470 (2008).
20 K. C. Lee, Polymer, 21, 384 (1997).
21 F. Vazquez, Polym. Int., 41, 1 (1996).   DOI   ScienceOn
22 T. I. Min, A. Klein, M. S. El-Aasser, and J. W. Vanderhoff, J. Polym. Sci. Polym. Chem. Ed., 21, 2845 (1983).   DOI
23 I. Cho and K. W. Lee, J. Appl. Polym. Sci., 30, 1903 (1985).   DOI   ScienceOn
24 M. Okubo, S. Yamaguchi, and T. Matsumoto, J. Appl. Polym. Sci., 31, 1075 (1986).   DOI   ScienceOn