DOI QR코드

DOI QR Code

Synthesis and Characterization of Au@TiO2 Core-Shell Microspheres

Au@TiO2 코어쉘 미세 입자의 합성 및 특성 평가

  • Kim, Sun-Geum (School of Electronics and Computer Engineering, Chonnam National University) ;
  • Jang, Ha Jun (Department of Sustainable Energy Engineering, Dongshin University) ;
  • Jang, Jaewon (KEPCO Research Institute, Korea Electric Power Corporation (KEPCO)) ;
  • Shim, Jae-Hyun (Department of Electrical & Electronic Materials Engineering, Dongshin University) ;
  • Baek, Sung-June (School of Electronics and Computer Engineering, Chonnam National University)
  • 김순금 (전남대학교 전자컴퓨터공학부) ;
  • 장하준 (동신대학교 에너지공학과) ;
  • 장재원 (한국전력공사 전력연구원) ;
  • 심재현 (동신대학교 전기전자재료공학과) ;
  • 백성준 (전남대학교 전자컴퓨터공학부)
  • Received : 2022.04.01
  • Accepted : 2022.04.30
  • Published : 2022.07.01

Abstract

We present the structural and optical properties of Au@TiO2 core-shell microsphere structure prepared by a hydrothermal synthesis method. As a way to improve the efficiency of organic solar cells, the Au@TiO2 core-shell microsphere was synthesized to use the local surface plasmon resonance (LSPR) phenomenon. The synthesized results were confirmed to have the Au@TiO2 core-shell structure using a high-resolution transmission electron microscopy. An absorption was observed to occur at 527 nm belonging to the visible light region using a visible light spectroscopy, which supports the LSPR phenomenon. We suggest that the Au@TiO2 core-shell microsphere is highly likely to be applied to organic solar cells including dye-sensitized solar cells. In addition, we expect it to be widely used not only in the energy but also in the bio as well as in the environmental fields.

Keywords

Acknowledgement

이 논문은 2021년 산업통상자원부의 재원으로 한국산업단지공단의 산업집적지경쟁력강화 사업의 지원을 받아 수행한 연구결과임 (과제번호: IRGJ2104).

References

  1. Y. H. Jang, Y. J. Jang, S. T. Kochuveedu, M. Byun, Z. Lin, and D. H. Kim, Nanoscale, 6, 1823 (2014). [DOI: https://doi.org/10.1039/c3nr05012b]
  2. M. D. Brown, T. Suteewong, R.S.S. Kumar, V. D'Innocenzo, A. Petrozza, M. M. Lee, U. Wiesner, and H. J. Snaith, Nano Lett., 11, 438 (2011). [DOI: https://doi.org/10.1021/nl1031106]
  3. T. M. Chen, G. Y. Xu, H. Ren, H. Zhang, Z. Q. Tian, and J. F. Li, Nanoscale Adv., 1, 4522 (2019). [DOI: https://doi.org/10.1039/c9na00548j]
  4. P. Yu, Y. Yao, J. Wu, X. Niu, A. L. Rogach, and Z. Wang, Sci. Rep., 7, 7696 (2017). [DOI: https://doi.org/10.1038/s41598-017-08077-9]
  5. M. Taheri, F. Hajiesmaeilbaigi, A. S. Motamedi, and Y. Golian, Laser Phys., 25, 065901 (2015). [DOI: https://doi.org/10.1088/1054-660X/25/6/065901]
  6. H. Y. Yang, S. H. Lee, H. M. Kim, X. H. Pham, E. Hahm, E. J. Kang, T. H. Kim, Y. Ha, B. H. Jun, and W. Y. Rho, J. Ind. Eng. Chem., 80, 311 (2019). [DOI: https://doi.org/10.1016/j.jiec.2019.08.009]
  7. D. Y. Kim, Polym. Sci. Technol., 24, 269 (2013).
  8. Z. Lin, X. Wang, J. Liu, Z. Tian, L. Dai, B. He, C. Han, Y. Wu, Z. Zeng, and Z. Hu, Nanoscale, 7, 4114 (2015). [DOI: https://doi.org/10.1039/C4NR06929C]
  9. G. K. Naik and Y. T. Yu, J. Sens. Sci. Technol., 28, 225 (2019). [DOI: https://doi.org/10.5369/JSST.2019.28.4.225]
  10. S. Liu, S. Q. Bai, Y. Zheng, K. W. Shah, and M. Y. Han, ChemCatChem, 4, 1462 (2012). [DOI: https://doi.org/10.1002/cctc.201200264]
  11. J. Qi, X. Dang, P. T. Hammond, and A. M. Belcher, ACS Nano, 5, 7108 (2011). [DOI: https://doi.org/10.1021/nn201808g]
  12. H. Y. Jung and K. J. Hong, J. Korean Inst. Electr. Electron. Mater. Eng., 31, 34 (2018). [DOI: https://doi.org/10.4313/JKEM.2018.31.1.34]
  13. M. Jakob, H. Levanon, and P. V. Kamat, Nano Lett., 3, 353 (2003). [DOI: https://doi.org/10.1021/nl0340071]
  14. M. Cargnello, T. R. Gordon, and C. B. Murray, Chem. Rev., 114, 9319 (2014). [DOI: https://doi.org/10.1021/cr500170p]
  15. C. P. Sajan, S. Wageh, A. A. Al-Ghamdi, J. Yu, and S. Cao, Nano Res., 9, 3 (2016). [DOI: https://doi.org/10.1007/s12274-015-0919-3]
  16. H. J. Lee, Y. G. Park, S. H. Lee, and J. H. Park, Korean Chem. Eng. Res., 56, 156 (2018). [DOI: https://doi.org/10.9713/kcer.2018.56.2.156]
  17. G. Geng, P. Chen, B. Guan, Y. Liu, C. Yang, N. Wangb, and M. Liu, RSC Adv., 7, 51838 (2017). [DOI: https://doi.org/10.1039/c7ra11188f]
  18. D. Y. Kim, W. Li, Y. Ma, T. Yu, Z. Y. Li, O. O. Park, and Y. Xia, Chem. Eur. J., 17, 4759 (2011). [DOI: https://doi.org/10.1002/chem.201100365]
  19. S. F. Shaikh, B. G. Ghule, U. T. Nakate, P. V. Shinde, S. U. Ekar, C. O'Dwyer, K. H. Kim, and R. S. Mane, Sci. Rep., 8, 11016 (2018). [DOI: https://doi.org/10.1038/s41598-018-29363-0]
  20. T. Tachikawa, S. Yamashita, and T. Majima, J. Am. Chem. Soc., 133, 7197 (2011). [DOI: https://doi.org/10.1021/ja201415j]