• Title/Summary/Keyword: Conveyor line

Search Result 66, Processing Time 0.026 seconds

A Mathematical Model for Converting Conveyor Assembly Line to Cellular Manufacturing

  • Kaku, Ikou;Gong, Jun;Tang, Jiafu;Yin, Yong
    • Industrial Engineering and Management Systems
    • /
    • v.7 no.2
    • /
    • pp.160-170
    • /
    • 2008
  • This paper proposes a mathematical model for converting conveyor assembly line to cellular manufacturing in complex production environments. Complex production environments refer to the situations with multi-products, variant demand, different batch sizes and the worker abilities varying with work stations and products respectively. The model proposed in this paper aims to determine (1) how many cells should be formatted; (2) how many workers should be assigned in each cell; (3) and how many workers should be rested in shortened conveyor line when a conveyor assembly line should be converted, in order to optimize system performances which are defined as the total throughput time and total labor power. We refer the model to a new production system. Such model can be used as an evaluation tool in the cases of (i) when a company wants to change its production system (usually a belt conveyor line) to a new one (including cell manufacturing); (ii) when a company wants to evaluate the performance of its converted system. Simulation experiments based on the data collected from the previous documents are used to estimate the marginal impact that each factor change has had on the estimated performance improvement resulting from the conversion.

Dynamic workspace analysis of a robot manipulator for conveyor tracking system (로봇의 동특성을 고려한 컨베이어 추적시스템의 작업영역 해석)

  • Park, Tae-Hyoung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.2
    • /
    • pp.226-234
    • /
    • 1998
  • The concept of dynamic tracking line is proposed as the feasible tracking region for a robot in a robot-conveyor system, which takes the conveyor speed into consideration. This paper presents an effective method to identify the dynamic tracking line in a robotic workcell. The maximum line speed of a robot is derived in an analytic form using the parameterized dynamics and kinematics of the manipulator, and some of its properties are established mathematically. The identification problem of the dynamic tracking line is then formulated as a root-solving problem for a single-variable equation, and solved by using a simple numerical technique. Finally, numerical examples are presented to demonstrate the methodology and its applications in workspace specification.

  • PDF

The Design of the U-Shaped Assembly Line to Replace Conveyor Systems (컨베이어 라인 변경시 U - 라인 설계의 효율적 방안 - K전자 사례를 중심으로 -)

  • Park, Seung-Hun
    • IE interfaces
    • /
    • v.16 no.2
    • /
    • pp.240-247
    • /
    • 2003
  • Generally, the assembly system relied on conveyor lines is efficient for mass production. But it is not efficient when the product types are often varying and their lot sizes are small. Especially, it is much inefficient for the assembly lines for the electronic products whose types are varying very often. This paper suggests the design of U-shaped assembly lines to replace the existing conveyor systems. The assembly line for the mini-cassette production is dealt with as a case study. The proposed procedure was successfully applied for the design of U-shaped lines. The developed method resulted in the improvement of the productivity such as the decrease of the man power and the cycle time, and the increase of the line utility.

Dynamic control approach of a robot manipulator for line-tracking applications (선추적 시스템을 위한 로봇매니퓰레이터의 동적제어)

  • Park, Tae-Hyeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.3
    • /
    • pp.349-359
    • /
    • 1998
  • A robot control scheme for specific application a line-tracking system is newly presented. To improve the performance of line-tracking, robot arm dynamics and torque constraints are incorporated into the control scheme. The tracking problem for the workpiece on a variable-speed conveyor is formulated as an optimal tracking problem with specific criteria. Dividing the conveyor speed into the nominal term and the perturbed term, a two-stage control strategy is employed to cope with the nonlinearity and uncertainty of the robot-conveyor system. Simulation results are given to verify good tracking performance with fast cycle time and high accuracy in a robotic workcell.

  • PDF

Minimum-Time Algorithm for Intercepting an Object by the Robot on Conveyor System (컨베이어 상의 물체 획득을 위한 로봇의 최소시간 알고리즘)

  • Shin, Ik-Sang;Moon, Seung-Bin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.9
    • /
    • pp.795-801
    • /
    • 2005
  • This paper focuses on planning strategies for object interception by the robotic manipulator on a conveyor system in minimum time. The goal is that the robot is able to intercept object with minimum time on a conveyor line that moves at a given speed. The search algorithm for minimum time solution is given in detail for all possible cases for initial locations of robot. Simulations results show the validity of the given algorithm.

Minimum time Algorithm for intercepting a Moving Object on Conveyor System (컨베이어 상의 이동 물체 획득을 위한 로봇의 최소시간 알고리즘)

  • Shin, Ik-Sang;Moon, Seung-Bin B.
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.526-528
    • /
    • 2004
  • This paper focuses on planning strategies for object interception, especially with minimum time. Herein, the goal is for robot to intercept object with minimum time on a conveyor line that flows to x-axis with respect to world coordinate system. In order to do it, conveyor system needs the algorithms for minimizing time. This objective is achieved by solving about two problems: selection of a minimum-time interception point and planning of an optimal robot trajectory. Herein, the first problem is formulated a minimization of the robot-object interception time.

  • PDF

Conveyor Capability Simulation for Semiconductor Diffusion Area (반도체 확산공정에서의 컨베이어 적정속도와 길이를 구하는 시뮬레이션)

  • 박일석;이칠기
    • Journal of the Korea Society for Simulation
    • /
    • v.11 no.3
    • /
    • pp.59-65
    • /
    • 2002
  • Semiconductor wafer fabrication is a business of high capital investment and fast changing nature. To be competitive, the production in a fab needs to be effectively planned and scheduled starting from the ramping up phase, so that the business goals such as on-time delivery, high output volume and effective use of capital intensive equipment can be achieved. Project executed that use conveyor in bay semiconductor A line. But conveyor capability is lacking and rundown happened in equipment. Do design without normal simulation and conveyor system failed. The comparison is peformed through simulation using .AutoMod a window 98 based discrete system simulation software, as a tool for comparing performance of proposed layouts. In this research estimate optimum conveyor capability, there is the purpose.

  • PDF

A Case Study of Line Layout Improvement based on Manufacturing Types and Work Methods - Case by Manufacture Cosmetics Company - (생산형태와 작업방법에 따른 라인배치의 개선에 관한 사례 연구 - 화장품 제조업체 사례 -)

  • Ji, Jae-Sung;Park, Joo-Sik
    • Journal of the Korea Safety Management & Science
    • /
    • v.10 no.2
    • /
    • pp.123-132
    • /
    • 2008
  • This study try introduce a cell manufacturing form and to make the productivity in a conveyor line manufacture for the customer requirement and market change. The case research from JIT theory that made the model to make a productivity enhance through the cell line in a conveyor line and U-line. This research was subject with a cosmetics manufacture company, therefor we can raise the quality enhance, personnel expenses and reduction of delivery effectiveness in a stroke types of industry consequently.

Worker-Centered Design for Working Area in the Electronic Industry

  • Baik, Sung Wan;Jeong, Byung Yong;Shin, Dong Seok
    • Journal of the Ergonomics Society of Korea
    • /
    • v.33 no.3
    • /
    • pp.229-239
    • /
    • 2014
  • Objective: This research provides a guideline for working area design in the electronic industry, considering gender differences of physical characteristics. Background: Co-work in the electronic industry requires workers of various physical properties to work cohesively in the conveyor line for mass production. This stresses the need for a worker-centered design of the workplace convenient for all the workers. Method: In this research, the $6^{th}$ Size Korea (National Anthropometric Survey in Korea) report is referred to obtain the design measurements according to age and gender varieties. This information is used to provide the working area guideline concerning conveyor line workers of both genders aged 20 to 40. Results: Physical properties of workers and workplace design principles were obtained for application in the assembly, inspection, and material handling process in the electronic industry. Conclusion: Applying ergonomic design principles can provide safe and comfortable workplace for both genders. Application: This research can be fundamentally used in designing worker-centered workplaces.