• Title/Summary/Keyword: Convex mapping

Search Result 134, Processing Time 0.023 seconds

STRONG CONVERGENCE IN NOOR-TYPE ITERATIVE SCHEMES IN CONVEX CONE METRIC SPACES

  • LEE, BYUNG-SOO
    • The Pure and Applied Mathematics
    • /
    • v.22 no.2
    • /
    • pp.185-197
    • /
    • 2015
  • The author considers a Noor-type iterative scheme to approximate com- mon fixed points of an infinite family of uniformly quasi-sup(fn)-Lipschitzian map- pings and an infinite family of gn-expansive mappings in convex cone metric spaces. His results generalize, improve and unify some corresponding results in convex met- ric spaces [1, 3, 9, 16, 18, 19] and convex cone metric spaces [8].

SHARP HEREDITARY CONVEX RADIUS OF CONVEX HARMONIC MAPPINGS UNDER AN INTEGRAL OPERATOR

  • Cheny, Xingdi;Mu, Jingjing
    • Korean Journal of Mathematics
    • /
    • v.24 no.3
    • /
    • pp.369-374
    • /
    • 2016
  • In this paper, we study the hereditary convex radius of convex harmonic mapping $f(z)=f_1(z)+{\bar{f_x(z)}}$ under the integral operator $I_f(z)={\int_{o}^{z}}{\frac{f_1(u)}{u}}du+{\bar{{\int_{o}^{z}}{\frac{f_x(u)}{u}}}}$ and obtain the sharp constant ${\frac{{\sqrt[4]{6}}-{\sqrt[]{15}}}{9}}$, which generalized the result corresponding to the class of analytic functions given by Nash.

Best Approximation Result in Locally Convex Space

  • Nashine, Hemant Kumar
    • Kyungpook Mathematical Journal
    • /
    • v.46 no.3
    • /
    • pp.389-397
    • /
    • 2006
  • A fixed point theorem of Singh and Singh [10] is generalized to locally convex spaces and the new result is applied to extend a result on invariant approximation of Jungck and Sessa [5].

  • PDF

CONVERGENCE THEOREM FOR A GENERALIZED 𝜑-WEAKLY CONTRACTIVE NONSELF MAPPING IN METRICALLY CONVEX METRIC SPACES

  • Kim, Kyung Soo
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.3
    • /
    • pp.601-610
    • /
    • 2021
  • A convergence theorem for a generalized 𝜑-weakly contractive mapping is proved which satisfy a generalized contraction condition on a complete metrically convex metric space. The result in this paper generalizes the relevant results due to Rhoades [18], Alber and Guerre-Delabriere [1], Khan and Imdad [14], Xue [20] and others. An illustrative example is also furnished in support of our main result.

CONVERGENCE THEOREMS OF MIXED TYPE IMPLICIT ITERATION FOR NONLINEAR MAPPINGS IN CONVEX METRIC SPACES

  • Kyung Soo, Kim
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.4
    • /
    • pp.903-920
    • /
    • 2022
  • In this paper, we propose and study an implicit iteration process for a finite family of total asymptotically quasi-nonexpansive mappings and a finite family of asymptotically quasi-nonexpansive mappings in the intermediate sense in convex metric spaces and establish some strong convergence results. Also, we give some applications of our result in the setting of convex metric spaces. The results of this paper are generalizations, extensions and improvements of several corresponding results.

A NEW ITERATION METHOD FOR FIXED POINT OF NONEXPANSIVE MAPPING IN UNIFORMLY CONVEX BANACH SPACE

  • Omprakash, Sahu;Amitabh, Banerjee;Niyati, Gurudwan
    • Korean Journal of Mathematics
    • /
    • v.30 no.4
    • /
    • pp.665-678
    • /
    • 2022
  • The aim of this paper is to introduce a new iterative process and show that our iteration scheme is faster than other existing iteration schemes with the help of numerical examples. Next, we have established convergence and stability results for the approximation of fixed points of the contractive-like mapping in the framework of uniformly convex Banach space. In addition, we have established some convergence results for the approximation of the fixed points of a nonexpansive mapping.

COMMON FIXED POINT AND INVARIANT APPROXIMATION IN MENGER CONVEX METRIC SPACES

  • Hussain, Nawab;Abbas, Mujahid;Kim, Jong-Kyu
    • Bulletin of the Korean Mathematical Society
    • /
    • v.45 no.4
    • /
    • pp.671-680
    • /
    • 2008
  • Necessary conditions for the existence of common fixed points for noncommuting mappings satisfying generalized contractive conditions in a Menger convex metric space are obtained. As an application, related results on best approximation are derived. Our results generalize various well known results.

STRONG CONVERGENCE OF MODIFIED ISHIKAWA ITERATES FOR ASYMPTOTICALLY NONEXPANSIVE MAPS WITH NEW CONTROL CONDITIONS

  • Eldred, A. Anthony;Mary, P. Julia
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.4
    • /
    • pp.1271-1284
    • /
    • 2018
  • In this paper, we establish strong convergence of the modified Ishikawa iterates of an asymptotically non expansive self-mapping of a nonempty closed bounded and convex subset of a uniformly convex Banach space under a variety of new control conditions.

An Iterative Method for Equilibrium and Constrained Convex Minimization Problems

  • Yazdi, Maryam;Shabani, Mohammad Mehdi;Sababe, Saeed Hashemi
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.1
    • /
    • pp.89-106
    • /
    • 2022
  • We are concerned with finding a common solution to an equilibrium problem associated with a bifunction, and a constrained convex minimization problem. We propose an iterative fixed point algorithm and prove that the algorithm generates a sequence strongly convergent to a common solution. The common solution is identified as the unique solution of a certain variational inequality.