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Abstract. A fixed point theorem of Singh and Singh [10] is generalized to locally con-

vex spaces and the new result is applied to extend a result on invariant approximation of

Jungck and Sessa [5].

1. Introduction

During the last four decades several interesting and valuable results as applica-
tion of fixed point theorems were studied extensively in the field of best approxi-
mation theory. An excellent reference can be seen in [14].

In 1963, Meinardus [7] was the first who observed the general principle and
employed a fixed point theorem to establish the existence of an invariant approxi-
mation. Afterwards in 1969, Brosowski [1] obtained the following generalization of
Meinardus’s result.

Theorem 1.1. Let X be a normed space and T : X → X be a linear and nonex-
pansive operator. Let M be a T−invariant subset of X and x0 ∈ F (T ). If D, the
set of best approximations of x0 in M, is nonempty compact and convex, then there
exists a y in D which is also a fixed point of T.

Using a fixed point theorem, Subrahmanyam [15] obtained the following gener-
alization of the above mentioned theorem of Meinardus [7].

Theorem 1.2. Let X be a normed space. If T : X → X is a nonexpansive operator
with a fixed point x0, leaving a finite dimensional subspace M of X invariant, then
there exists a best approximation of x0 in M which is also a fixed point of T.

In 1979, Singh [11] observed that the linearity of mapping T and the convexity
of the set D of best approximation of x0 in Theorem 1.1, can be relaxed and proved
the following extension of it.

Theorem 1.3. Let X be a normed space, T : X → X be a nonexpansive mapping,
M be a T−invariant subset of X and x0 ∈ F (T ). If D is nonempty compact and
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starshaped, then there exists a best approximation of x0 in M which is also a fixed
point of T .

In a subsequent paper, Singh [12] also observed that only the nonexpansiveness
of T on D′ = D∪{x0} is necessary for the validity of Theorem 1.3. Further in 1982,
Hicks and Humpheries [3] had shown that Theorem 1.3 remain true, if T : M 7→ M
is replaced by T : ∂M 7→ M , where ∂M , denotes the boundary of M. Furthermore,
Sahab, Khan and Sessa [9] generalized the result of Hicks and Humpheries [3] and
Theorem 1.3 using two mappings, one linear and other nonexpansive for commut-
ing mappings and established the following result of common fixed point for best
approximation in setup of normed linear space. They took this idea from Park [8].

Theorem 1.4. Let I and T be self maps of X with x0 ∈ F (I)∩F (T ), M ⊂ X with
T : ∂M 7→ M , and p ∈ F (I). If D, the set of best approximation is compact and
p-starshaped, I(D) = D, I is continuous and linear on D, I and T are commuting
on D and T is I-nonexpansive on D ∪ {x0}, then I and T have a common fixed
point in D.

In another paper, Jungck and Sessa [5] further weakened the hypothesis of
Sahab, Khan and Sessa [9] by replacing the condition of linearity by affineness to
prove the existence of best approximation in normed linear space. However, they
used weak continuity of the mapping for such purpose in the second result. For
this, they used the result due to Jungck [4].

In this paper, we first derive a common fixed point result in locally convex
space which generalize the result of Singh and Singh [10] which was generalization
of Jungck [4]. This new result is used to prove another fixed point result for best
approximation. By doing so, we infact, extend and improve the result of Jungck
and Sessa [5] for generalized contraction mappings. For this purpose, we use the
concept given by Köthe [6] and Tarafdar [16]. In this way, we give new direction
to the line of investigation given by Brosowski [1].

2. Preliminaries

To prove our results, we need the following:

Definition 2.1 ([6]). In the sequel (E, τ) will be a Hausdorff locally convex topo-
logical vector space. A family {pα : α ∈ I} of seminorms defined on E is said
to be an associated family of seminorms for τ if the family {γU : γ > 0}, where
U =

⋂n
i=1 Uαi and Uαi = {x : pαi(x) < 1}, forms a base of neighbourhood of zero

for τ . A family {pα : α ∈ I} of seminorms defined on E is called an augmented
associated family for τ if {pα : α ∈ I} is an associated family with the property that
the seminorm max{pα, pβ} ∈ {pα : α ∈ I} for any α, β ∈ I. The associated and
augmented families of seminorms will be denoted by A(τ) and A∗(τ), respectively.
It is well known that if given a locally convex space (E, τ), there always exists a
family {pα : α ∈ I} of seminorms defined of E such that {pα : α ∈ I} = A∗(τ). A
subset M of E is τ -bounded if and only if each pα is bounded on M.
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The following construction will be crucial. Suppose that M is a τ -bounded
subset of E. For this set M , we can select a number λα > 0 for each α ∈ I
such that M ⊂ λαUα where Uα = {x : pα(x) ≤ 1}. Clearly, B =

⋂
α λαUα is τ -

bounded, τ -closed, absolutely convex and contains M. The linear span EB of B in E
is

⋃∞
n=1 nB. The Minkowski functional of B is a norm ‖.‖B on EB . Thus, (EB , ‖.‖B)

is a normed space with B as its closed unit ball and supα pα(x/λα) = ‖x‖B for each
x ∈ EB .

Definition 2.2. Let I and T be self maps on M. The map T is called

(i) A∗(τ)-nonexpansive if for all x, y ∈ M

pα(Tx− Ty) ≤ pα(x− y),

for each pα ∈ A∗(τ).

(ii) A∗(τ)-I−nonexpansive if for all x, y ∈ M

pα(Tx− Ty) ≤ pα(Ix− Iy),

for each pα ∈ A∗(τ).

For simplicity, we shall call A∗(τ)-nonexpansive (A∗(τ)−I- nonexpansive) maps
to be nonexpansive (I−nonexpansive).

Definition 2.3. Let x0 ∈ M . We denote by PM (x0) the set of best
M−approximation to x0, i.e., if PM (x0) = {y ∈ M : pα(y − x0) = dpα(x0,M)
for all pα ∈ A∗(τ)}, where

dpα(x0,M) = inf{pα(x0 − z) : z ∈ M}.

Definition 2.4. The map T : M → E is said to be demiclosed at 0 if for every net
{xn} in M converging weakly to x and {Txn} converging strongly to 0, we have
Tx = 0.

Throughout, this paper F (T )(resp. F (I)) denotes the fixed point set of mapping
T (resp. F (I)).

We also use the following result due to Singh and Singh [10]:

Theorem 2.5 ([10]). Let T, S and I be self maps of a complete metric space
(X, d) such that T (X) ∪ S(X) ⊆ I(X), T I = IT, SI = IS; I is continuous, and
satisfying

d(Tx, Sy) ≤ N(x, y),

where

N(x, y) = h max{d(Ix, Iy), d(Ix, Tx), d(Iy, Sy),
1
2
[d(Ix, Sy) + d(Iy, Tx)]},
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for all x, y ∈ X, where h ∈ (0, 1), then T, S and I have a unique common fixed point
in X.

3. Main result

We use a technique of Tarafdar [16] to obtain the following common fixed point
theorem which generalize Theorem 2.5.

Theorem 3.1. Let M be a nonempty τ -bounded, τ -sequentially complete subset of
a Hausdorff locally convex space (E, τ). Let T, S and I be self maps of M such that
T (X) ∪ S(X) ⊆ I(X), T I = IT, SI = IS; I is nonexpansive, and satisfying

(3.1) pα(Tx− Sy) ≤ N(x, y),

where

N(x, y) = h max{pα(Ix− Iy), pα(Ix− Tx), pα(Iy − Sy),
1
2
[pα(Ix− Sy) + pα(Iy − Tx)]}

for all x, y ∈ M and pα ∈ A∗(τ), where h ∈ (0, 1), then T, S and I have a unique
common fixed point in M .

Proof. Since the norm topology on EB has a base of neighbourhood of zero con-
sisting of τ -closed sets and M is τ -sequentially complete, therefore, M is a ‖.‖B-
sequentially complete subset of (EB , ‖.‖B) (Theorem 1.2, [16]). From (3.1) we
obtain for x, y ∈ M ,

sup
α

pα(
Tx− Sy

λα
) ≤ hmax{sup

α
pα(

Ix− Iy

λα
), sup

α
pα(

Ix− Tx

λα
), sup

α
pα(

Iy − Sy

λα
),

1
2
[sup

α
pα(

Ix− Sy

λα
) + sup

α
pα(

Iy − Tx

λα
)]}.

Thus

‖Tx− Sy‖B ≤ h max{‖Ix− Iy‖B , ‖Ix− Tx‖B , ‖Iy − Ty‖B ,(3.2)
1
2
[ ‖Ix− Sy‖B + ‖Iy − Tx‖B ]}.

Note that, if I is nonexpansive on a τ -bounded, τ -sequentially complete subset
M of E, then I is also nonexpansive with respect to ‖.‖B and hence ‖.‖B-continuous
([6]). A comparison of our hypothesis with that of Theorem 2.5 tells that we can
apply Theorem 2.5 to M as a subset of (EB , ‖.‖B) to conclude that there exists a
unique v ∈ M such that v = Tv = Sv = Iv. ¤

Theorem 3.2. Let M be a nonempty τ -bounded, τ -sequentially complete and
q−starshaped subset of a Hausdorff locally convex space (E, τ). Let T, S and I be
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self-maps of M such that TI = IT, SI = IS on M. Suppose that T, S are continu-
ous, I is nonexpansive and affine, I(M) = M, p ∈ F (I). If T, S and I satisfy the
following:

(3.3) pα(Tx− Sy) ≤ N(x, y),

where

N(x, y) = h max{pα(Ix−Iy), pα(Ix−Tx), pα(Iy−Sy),
1
2
[pα(Ix−Sy)+pα(Iy−Tx)]}

for all x, y ∈ M and pα ∈ A∗(τ), where h ∈ (0, 1), then T, S and I have a common
fixed point provided one of the following conditions hold:

(i) M is τ -sequentially compact;

(ii) T, S is a compact map;

(iii) M is weakly compact in (E, τ), I is weakly continuous and I − T and I − S
are demiclosed at 0.

Proof. Choose a monotonically nondecreasing sequence {kn} of real numbers such
that 0 < kn < 1 and lim sup kn = 1. For each n ∈ N, define Tn, Sn : M → M as
follows:

(3.4) Tnx = knTx + (1− kn)p, Snx = knSx + (1− kn)p.

Obviously, for each n, Tn and Sn map M into itself since M is q−starshaped.
As I is affine, I commutes with T and p ∈ F (I), so

TnIx = knTIx + (1− kn)p
= knITx + (1− kn)Ip

= I(knTx + (1− kn)p)
= ITnx

for each x ∈ M . Thus Tn and I are commutative for each n and Tn(M) ⊆ M =
I(M). Similarly, we can prove Sn and I are commutative for each n and Sn(M) ⊆
M = I(M). Therefore Tn(M) ∪ Sn(M) ⊆ I(M).

For all x, y ∈ M, pα ∈ A∗(τ) and for all j ≥ n, (n fixed), we obtain from (3.4)
and (3.3) that

pα(Tnx− Sny) = knpα(Tx− Sy) ≤ kjpα(Tx− Sy)
≤ pα(Tx− Sy)
≤ h max{pα(Ix− Iy), pα(Ix− Tx), pα(Iy − Sy),

1
2
[pα(Ix− Sy) + pα(Iy − Tx)]}
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≤ h max{pα(Ix− Iy), pα(Ix− Tnx) + pα(Tnx− Tx),
pα(Iy − Sny) + pα(Sny − Sy),
1
2
[pα(Ix− Sny) + pα(Sny − Sy) + pα(Iy − Tnx) + pα(Tnx− Tx)]}

≤ h max{pα(Ix− Iy), pα(Ix− Tnx)
+ (1− kn)pα(p− Tx), pα(Iy − Sny)

+ (1− kn)pα(p− Sy),
1
2
[pα(Ix− Sny)

+ (1− kn)pα(p− Sy) + pα(Iy − Tnx) + (1− kn)pα(p− Tx)]}.
Hence for all j ≥ n, we have

pα(Tnx− Sny) ≤ hmax{pα(Ix− Iy), pα(Ix− Tnx)(3.5)
+ (1− kj)pα(p− Tx), pα(Iy − Sny)

+ (1− kj)pα(p− Sy),
1
2
[pα(Ix− Sny)

+ (1− kj)pα(p− Sy) + pα(Iy − Tnx)
+ (1− kj)pα(p− Tx)]}.

As lim kj = 1, from (3.5), for every n ∈ N, we have

pα(Tnx− Sny) = lim
j

pα(Tnx− Tny)(3.6)

≤ lim
j
{h max{pα(Ix− Iy), pα(Ix− Tnx)

+ (1− kj)pα(p− Tx), pα(Iy − Sny)

+ (1− kj)pα(p− Sy),
1
2
[pα(Ix− Sny)

+ (1− kj)pα(p− Sy) + pα(Iy − Tnx)
+ (1− kj)pα(p− Tx)]}.

This implies that for every n ∈ N,

pα(Tnx− Sny) ≤ h max{pα(Ix− Iy), pα(Ix− Tnx), pα(Iy − Sny),(3.7)
1
2
[pα(Ix− Sny) + pα(Iy − Tnx)]},

for all x, y ∈ M , for all pα ∈ A∗(τ) and 0 < h < 1.
Moreover, I being nonexpansive on M, implies that I is ‖.‖B-nonexpansive and,

hence, ‖.‖B-continuous. Since the norm topology on EB has a base of neighbour-
hood of zero consisting of τ -closed sets and M is τ -sequentially complete, therefore,
M is a ‖.‖B-sequentially complete subset of (EB , ‖.‖B) (see proof of Theorem 1.2 in
[16]). Thus from Theorem 3.1, for every n ∈ N , Tn, Sn and I have unique common
fixed point xn in M, i.e.,

(3.8) xn = Tnxn = Snxn = Ixn,
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for each n ∈ N.

(i) As M is τ -sequentially compact and {xn} is a sequence in M, so {xn} has
a convergent subsequence {xm} such that xm → y ∈ M . As I and S, T are
continuous and

xm = Ixm = Tmxm = kmTxm + (1− km)p,

xm = Smxm = kmSxm + (1− km)p,

so it follows that y = Ty = Sy = Iy.

(ii) As T is compact and {xn} is bounded, so {Txn} has a subsequence {Txm}
such that {Txm} → z ∈ M. Now we have

xm = Tmxm = kmTxm + (1− km)p

Proceeding to the limit as m → ∞ and using the continuity of I and T, we
have Iz = z = Tz. Similarly, we can show Sz = z.

(iii) The sequence {xn} has a subsequence {xm} converges to u ∈ M. Since I is
weakly continuous and so as in (i), we have Iu = u. Now,

xm = Ixm = Tmxm = kmTxm + (1− km)p

implies that
Ixm − Txm = (1− km)[p− Txm] → 0

as m → ∞. The demiclosedness of I − T at 0 implies that (I − T )u = 0.
Hence Iu = u = Tu. Similarly, we can show Su = u = Iu, when I − S is
demiclosed at 0. This completes the proof. ¤

An immediate consequence of the above theorem is as follows:

Corollary 3.3. Let M be a nonempty τ -bounded, τ -sequentially complete and
q−starshaped subset of a Hausdorff locally convex space (E, τ). Let T, S and I be self-
maps of M such that TI = IT, SI = IS on M. Suppose that T, S are continuous,
I is nonexpansive and affine, I(M) = M, p ∈ F (I). If T, S and I satisfy the
following:

(3.9) pα(Tx− Sy) ≤ N(x, y),

where

N(x, y) = h max{pα(Ix− Iy), pα(Ix− Tx), pα(Iy − Sy),
1
2
pα(Ix− Sy),

1
2
pα(Iy − Tx)}

for all x, y ∈ M and pα ∈ A∗(τ), where h ∈ (0, 1), then T, S and I have a common
fixed point in M under each of the conditions (i)-(iii) of Theorem 3.2.
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An application of Theorem 3.2, we prove the following more general result in
best approximation theory.

Theorem 3.4. Let T, S and I be self maps of a Hausdorff locally convex space
(E, τ) and M a subset of E such that T, S(∂M) ⊆ M, where ∂M stands for the
boundary of M and x0 ∈ F (T ) ∩ F (S) ∩ F (I). Suppose that T, S are continuous,
I is nonexpansive and affine on D = PM (x0). Further, suppose T, S and I satisfy
(3.3) for each x, y ∈ D, pα ∈ A∗(τ) and 0 < h < 1. If D is nonempty q−starshaped
with p ∈ F (I) and I(D) = D, then T, S and I have a common fixed point in D
provided one of the following conditions hold:

(i) D is τ -sequentially compact;

(ii) T, S is a compact map;

(iii) D is weakly compact in (E, τ), I is weakly continuous and I − T and I − S
are demiclosed at 0.

Proof. First, we show that T and S are self map on D, i.e.,T, S : D 7→ D. Let y ∈ D,
then Iy ∈ D, since I(D) = D. Also, if y ∈ ∂M , then Ty ∈ M , since T (∂M) ⊆ M .
Now since Tx0 = Sx0 = x0 = Ix0, so for each pα ∈ A∗(τ), we have from (3.3)

pα(Ty − x0) = pα(Ty − Sx0) ≤ N(y, x0).

Now,Ty ∈ M and Iy ∈ D, this imply that Ty is also closest to x0, so Ty ∈ D.
Similarly Sy ∈ D. Consequently T, S and I are self maps on D. The conditions
of Theorem 3.2 ((i)-(iii)) are satisfied and, hence, there exists a w ∈ D such that
Tw = Sw = w = Iw. This completes the proof. ¤

An immediate consequence of the above theorem is as follows:

Corollary 3.5. Let T, S and I be self maps of a Hausdorff locally convex space
(E, τ) and M a subset of E such that T, S(∂M) ⊆ M, where ∂M stands for the
boundary of M and x0 ∈ F (T ) ∩ F (S) ∩ F (I). Suppose that T, S are continuous,
I is nonexpansive and affine on D = PM (x0). Further, suppose T, S and I satisfy
(3.9) for each x, y ∈ D, pα ∈ A∗(τ) and 0 < h < 1. If D is nonempty q-starshaped
with p ∈ F (I) and I(D) = D, then T, S and I have a common fixed point in D
under each of the conditions (i)− (iii) of Theorem 3.4.
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