• Title/Summary/Keyword: Convective velocity

Search Result 259, Processing Time 0.027 seconds

Numerical Prediction of Contaminant Dispersion within the Laminar Flow Field using FDM (FDM을 이용한 층유유동장내에서 오염물질확산에 관한 연구)

  • 김양술
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.2
    • /
    • pp.56-63
    • /
    • 1995
  • A simulation of contaminant dispersion in a water reservoir has been done using 2-D finite difference method(FDM). The steady state velocity field of the reservoir was computed using stream function-vorticity formulation of Wavier-Stokes equation and continuity equation. Based on the computed steady state velocity field, the transient convective diffusion equation of the contaminant dispersion was computed. For the 1m$\times$1m reservoir model with inlet and outlet attached, it was shown that the center of circulation located toward right. For the numerical values of v =0.01($\textrm{cm}^2$/s) and D=0.6($\textrm{cm}^2$/s) and the flow of 50($\textrm{cm}^3$/s ), it was determined that the outflow had to be shut down in 18 seconds to prevent from severe pollution. Also the required time was computed to be 6 seconds for the inflow of 100 ($\textrm{cm}^3$/s). The result of this study is considered, hopefully, to be useful for the design of the water reservoir systems that are the subjects to various contamination.

  • PDF

SORET AND DUFOUR EFFECTS ON RADIATIVE HYDROMAGNETIC FLOW OF A CHEMICALLY REACTING FLUID OVER AN EXPONENTIALLY ACCELERATED INCLINED POROUS PLATE IN PRESENCE OF HEAT ABSORPTION AND VISCOUS DISSIPATION

  • VENKATESWARLU, M.;BHASKAR, P.;LAKSHMI, D. VENKATA
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.23 no.3
    • /
    • pp.157-178
    • /
    • 2019
  • The present correspondence is conveyed on to consider the fascinating and novel characteristics of radiative hydromagnetic convective flow of a chemically reacting fluid over an exponentially accelerated inclined porous plate. Exact solutions for the fluid velocity, temperature and species concentration, under Boussinesq approximation, are obtained in closed form by the two term perturbation technique. The interesting parts of thermal dispersing outcomes are accounted in this correspondence. Graphical evaluation is appeared to depict the trademark direct of introduced parameters on non dimensional velocity, temperature and concentration profiles. Also, the numerical assortment for skin friction coefficient, Nusselt number and Sherwood number is examined through tables. The certification of current examination is confirmed by making an examination with past revelations available in composing, which sets a benchmark for utilization of computational approach.

Influence of fluidelastic vibration frequency on predicting damping controlled instability using a quasi-steady model in a normal triangular tube array

  • Petr Eret
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1454-1459
    • /
    • 2024
  • Researchers have applied theoretical and CFD models for years to analyze the fluidelastic instability (FEI) of tube arrays in steam generators and other heat exchangers. The accuracy of each approach has typically been evaluated using the discrepancy between the experimental critical flow velocity and the predicted value. In the best cases, the predicted critical flow velocity was within an order of magnitude comparable to the measured one. This paper revisits the quasi-steady approach for damping controlled FEI in a normal triangular array with a pitch ratio of P/d = 1.375. The method addresses the fluidelastic frequency at the stability threshold as an input parameter for the approach. The excellent agreement between the estimated stability thresholds and the equivalent experimental results suggests that the fluidelastic frequency must be included in the quasi-steady analysis, which requires minimal computing time and experimental data. In addition, the model allows a simple time delay analysis regarding flow convective and viscous effects.

An Experimental Study on the Effect of Fuel Dilution on the Propagation Velocity of Triple Flames in a Diverging Channel (연료희석이단면확대채널에형성된삼지화염의전파속도에미치는영향에관한실험적연구)

  • Seo, Jeong-Il;Shin, Hyun-Dong;Kim, Nam-Il
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.13-18
    • /
    • 2007
  • When triple flames propagated in a diverging channel, the effects of fuel dilution on the lift-off characteristics of triple flames were investigated. A multi-slot burner was used to stabilize the lift-off flame especially at weak fuel concentration gradients. It was reported that there is a maximum propagation velocity at a critical concentration gradient in an open jet regardless of fuel dilution. The enhancement of a diffusion flame affected to increase the propagation velocity around critical concentration gradients. However, the influence of a confined channel on the structure of triple flames according to fuel dilution needs to be investigated compared with an open jet case. This study aimed to examine the effect of a confined channel on the structure and the propagation velocity of the triple flames according to fuel dilution. Lift-off height and propagation velocity of triple flames were investigated by employing three kinds of fuel compositions diluted by nitrogen (0%, 25%, 50% $N_2$), Fuel dilution reduced the propagation velocity of triple flame in a confined channel mainly due to the decrease of flame temperature in premixed branch. Despite the difference in fuel dilution, the propagation velocity has a maximum value at a specific fuel concentration gradient even though the critical concentration gradient increases with fuel dilution. And the critical concentration gradient in a confined channel is larger than that in an open jet due to enhancement of convective diffusion.

  • PDF

Development of a Flow Analysis Code Using an Unstructured Grid with the Cell-Centered Method

  • Myong, Hyon-Kook;Kim, Jong-Tae
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2218-2229
    • /
    • 2006
  • A conservative finite-volume numerical method for unstructured grids with the cell-centered method has been developed for computing flow and heat transfer by combining the attractive features of the existing pressure-based procedures with the advances made in unstructured grid techniques. This method uses an integral form of governing equations for arbitrary convex polyhedra. Care is taken in the discretization and solution procedure to avoid formulations that are cell-shape-specific. A collocated variable arrangement formulation is developed, i.e. all dependent variables such as pressure and velocity are stored at cell centers. For both convective and diffusive fluxes the forms superior to both accuracy and stability are particularly adopted and formulated through a systematic study on the existing approximation ones. Gradients required for the evaluation of diffusion fluxes and for second-order-accurate convective operators are computed by using a linear reconstruction based on the divergence theorem. Momentum interpolation is used to prevent the pressure checkerboarding and a segregated solution strategy is adopted to minimize the storage requirements with the pressure-velocity coupling by the SIMPLE algorithm. An algebraic solver using iterative preconditioned conjugate gradient method is used for the solution of linearized equations. The flow analysis code (PowerCFD) developed by the present method is evaluated for its application to several 2-D structured-mesh benchmark problems using a variety of unstructured quadrilateral and triangular meshes. The present flow analysis code by using unstructured grids with the cell-centered method clearly demonstrate the same accuracy and robustness as that for a typical structured mesh.

Numerical analysis of turbulent recirculating flow in swirling combustor by non-orthogonal coordinate transformation (비직교 좌표변환에 의한 선회연소기내 난류재순환유동의 수치해석)

  • 신종근;최영돈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.1158-1174
    • /
    • 1988
  • A numerical technique is developed for the solution of fully developed turbulent recirculating flow in the passage of variable area using the non-orthogonal coordinate transformation. In the numerical analysis, primitive pressure-velocity finite difference equations were solved by SIMPLER algorithm with 2-equation turbulence model and algebraic stress model (ASM). QUICK scheme on the differencing of convective terms which is free from the inaccuracies of numerical diffusion has been applied to the variable grids and the results compared with those from HYBRID scheme. In order to test the effect of streamline curvatures on turbulent diffusion Lee and Choi streamline curvature correction model which has been obtained by modifying the Leschziner and Rodi's model is testes. The ASM was also employed and the results are compared to those from another turbulence model. The results show that difference of convective differencing schemes and turbulence models give significant differences in the prediction of velocity fields in the expansion region and outlet region of the combustor, however show little differences in the parallel flow region.

Impact of Cumulus Parameterization Schemes with Different Horizontal Grid Sizes on Prediction of Heavy Rainfall (적운 모수화 방안이 고해상도 집중호우 예측에 미치는 영향)

  • Lee, Jae-Bok;Lee, Dong-Kyou
    • Atmosphere
    • /
    • v.21 no.4
    • /
    • pp.391-404
    • /
    • 2011
  • This study investigates the impact of cumulus parameterization scheme (CPS) with different horizontal grid sizes on the simulation of the local heavy rainfall case over the Korean Peninsula. The Weather Research and Forecasting (WRF)-based real-time forecast system of the Joint Center for High-impact Weather and Climate Research (JHWC) is used. Three CPSs are used for sensitivity experiments: the BMJ (Betts-Miller-Janjic), GD (Grell-Devenyi ensemble), and KF (Kain-Fritsch) CPSs. The heavy rainfall case selected in this study is characterized by low-level jet and low-level transport of warm and moist air. In 27-km simulations (DM1), simulated precipitation is overestimated in the experiment with BMJ scheme, and it is underestimated with GD scheme. The experiment with KF scheme shows well-developed precipitation cells in the southern and the central region of the Korean Peninsula, which are similar to the observations. All schemes show wet bias and cold bias in the lower troposphere. The simulated rainfall in 27-km horizontal resolution has influence on rainfall forecast in 9-km horizontal resolution, so the statements on 27-km horizontal resolution can be applied to 9-km horizontal resolution. In the sensitivity experiments of CPS for DM3 (3-km resolution), the experiment with BMJ scheme shows better heavy rainfall forecast than the other experiments. The experiments with CPS in 3-km horizontal resolution improve rainfall forecasts compared to the experiments without CPS, especially in rainfall distribution. The experiments with CPS show lower LCL(Lifted Condensation Level) than those without CPS at the maximum rainfall point, and weaker vertical velocity is simulated in the experiments with CPS compared to the experiments without CPS. It means that CPS suppresses convective instability and influences mainly convective rainfall. Consequently, heavy rainfall simulation with BMJ CPS is better than the other CPSs, and even in 3-km horizontal resolution, CPS should be applied to control convective instability. This conclusion can be generalized by conducting more experiments for a variety of cases over the Korean Peninsula.

The Advancement of Breakup and Spray Formation by the Swirl Spray Jets in the Low Speed Convective Flow (전단 유동에 의한 스월 제트의 미립화 및 분무특성 향상)

  • Jeong, Jae-Chul;Yoon, Woong-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.267-274
    • /
    • 2009
  • Breakup and spray formation of pressure-swirl liquid jets injected into a low-speed convective-flow are experimentally investigated. Effects of the cross-flows on the macroscopic and microscopic spray parameters are optically measured in terms of jet Weber number and liquid-to-gas momentum ratio. The liquid stream undergoes Rayleigh jet breakup at lower jet Weber numbers and a liquid sheet isn't formed because of the weak radial velocity in the swirl jet. At higher jet Weber numbers, the macroscopic spray parameter is a very weak function of the momentum ratio but the effect of the convection on the microscopic spray parameter is significant through the secondary breakup with increasing in the liquid-to-gas momentum ratio. The convective-flow promotes bag/plume breakup and the spray formation, and its effect is more distinct at higher momentum ratio.

  • PDF

A Study on the Convective Heat Transfer in a Regenerative Ice Energy System by a Bundle of the Heat-pipes. (히이트파이프 다발을 이용한 냉축열시스템에서의 대류열전달에 관한 연구)

  • 권형정;김경석;김경근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.14 no.4
    • /
    • pp.57-66
    • /
    • 1990
  • In the design of an electric power plant, the capacity to meet the peak load demand is one of the important factors to be considered. This peak load usually occurs when the most of the cooling air conditioning systems are being operated during daytime in summer season, which inevitably entails the construction of an additional electric power plant. This study is aimed to carry out a basic experiment for the development of a cooling air conditioning system using the ice energy by the surplus electric power during the night-time. The experimental apparatus consists of four major parts; (1) the heating section consisting of the air duct and I.D. fan, (2) the cold section with the ice chamber, (3) the bundle of heat pipes made in a form of the staggered arrangement with ${C_y}/{d_o}$=2.0 and ${C_x}/{d_o}$=1.73, (4) the refrigerator system to cool down the ice chamber. This study involves an intensive experiment concerning the convective heat transfer of the air flow surrounding the bundle of heat pipes. This major experimental parameters are the amount of working fluid, the velocity of air and the working temperature. The major findings of the present study are as follows; (1) The optimum amount of the working fluid necessary for the horizontal heat pipes is much more than that for the vertical type. (2) The convective heat transfer coefficients of the air are coincided with the empirical equations of Grimson and ${\breve{Z}ukauskas}$. (3) The equation of the mean heat transfer coefficient obtained in the present study is ${N_um}=0.32 {Re_max^{0.63}}$.

  • PDF

A study on the temperature distribution characteristics in the tube modules of a heat recovery steam generator ith the change of heat transfer modeling (배열회수 보일러 전열관군에서 열전달 모델링에 따른 온도 분포 특성 연구)

  • Ha, Ji Soo
    • Journal of Energy Engineering
    • /
    • v.24 no.2
    • /
    • pp.103-109
    • /
    • 2015
  • A heat recovery steam generator consists of inlet expansion duct and heat transfer tube bank modules. For the enhancement of heat transfer in the tube bank modules, the flow should be uniform before the 1st heat transfer tube bank module. The present study has been carried out to analyze the flow characteristics in the inlet expansion duct of a heat recovery steam generator by using numerical flow analysis. The aim of the present study is to establish the proper heat transfer mechanism in the heat transfer tube bank modules by the comparison of the heat transfer models, the case with the constant heat loss per unit volume and the case with heat loss by using inner and outer convective heat transfer coefficient of heat transfer tube. From the present research, it could be seen that the heat transfer mechanism with using inner and outer convective heat transfer coefficient derives more proper temperature distribution results and the acceptance criteria of the temperature distribution within ${\pm}10^{\circ}C$ before SCR is satisfied with using this heat transfer mechanism.