Browse > Article
http://dx.doi.org/10.14191/Atmos.2011.21.4.391

Impact of Cumulus Parameterization Schemes with Different Horizontal Grid Sizes on Prediction of Heavy Rainfall  

Lee, Jae-Bok (School of Earth and Environmental Sciences, Seoul National University)
Lee, Dong-Kyou (School of Earth and Environmental Sciences, Seoul National University)
Publication Information
Atmosphere / v.21, no.4, 2011 , pp. 391-404 More about this Journal
Abstract
This study investigates the impact of cumulus parameterization scheme (CPS) with different horizontal grid sizes on the simulation of the local heavy rainfall case over the Korean Peninsula. The Weather Research and Forecasting (WRF)-based real-time forecast system of the Joint Center for High-impact Weather and Climate Research (JHWC) is used. Three CPSs are used for sensitivity experiments: the BMJ (Betts-Miller-Janjic), GD (Grell-Devenyi ensemble), and KF (Kain-Fritsch) CPSs. The heavy rainfall case selected in this study is characterized by low-level jet and low-level transport of warm and moist air. In 27-km simulations (DM1), simulated precipitation is overestimated in the experiment with BMJ scheme, and it is underestimated with GD scheme. The experiment with KF scheme shows well-developed precipitation cells in the southern and the central region of the Korean Peninsula, which are similar to the observations. All schemes show wet bias and cold bias in the lower troposphere. The simulated rainfall in 27-km horizontal resolution has influence on rainfall forecast in 9-km horizontal resolution, so the statements on 27-km horizontal resolution can be applied to 9-km horizontal resolution. In the sensitivity experiments of CPS for DM3 (3-km resolution), the experiment with BMJ scheme shows better heavy rainfall forecast than the other experiments. The experiments with CPS in 3-km horizontal resolution improve rainfall forecasts compared to the experiments without CPS, especially in rainfall distribution. The experiments with CPS show lower LCL(Lifted Condensation Level) than those without CPS at the maximum rainfall point, and weaker vertical velocity is simulated in the experiments with CPS compared to the experiments without CPS. It means that CPS suppresses convective instability and influences mainly convective rainfall. Consequently, heavy rainfall simulation with BMJ CPS is better than the other CPSs, and even in 3-km horizontal resolution, CPS should be applied to control convective instability. This conclusion can be generalized by conducting more experiments for a variety of cases over the Korean Peninsula.
Keywords
Heavy rainfall; Cumulus parameterization scheme; Weather Research and Forecasting (WRF) model; Horizontal grid size;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Betts, A. K., 1982: Saturation point analysis of moist convective overturning. J. Atmos. Sci., 39, 1484-1505.   DOI
2 Betts, A. K., 1986: A new convective adjustment scheme. Part I: Observational and theoretical basis. Quart. J. Roy. Meteor. Soc., 112, 677-691.
3 Betts, A. K. and M. J. Miller, 1986: A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX and arctic air-mass data sets. Quart. J. Roy. Meteor. Soc., 112, 693-709.
4 Black, T. L., 1994: The new NMC mesoscale Eta Model: Description and forecast examples. Wea. Forecasting, 9, 265-278.   DOI
5 Deng, A., N. L. Seaman, and J. S. Kain, 2003: A shallow convection parameterization for mesoscale models. Part I: Submodel description and preliminary applications. J. Atmos. Sci., 60, 34-56   DOI   ScienceOn
6 Deng, A. and D. R. Stauffer, 2006: On improving 4-km mesoscale model simulations. J. Appl. Meteor. Climatol., 45, 361-381.   DOI   ScienceOn
7 Emanuel, K. A. and D. J. Raymond, Eds., 1983: The Representation of Cumulus Convection in Numerical Models. Meteor. Monogr., No. 46, Amer. Meteor. Soc., 246pp.
8 Frank, W. M., 1978: The Cumulus Parameterization Problem. Mon. Wea. Rev., 111, 1859-1871.
9 Fritsch, J. M. and C. F. Chappell, 1980: Numerical prediction of convectively driven mesoscale pressure systems. Part I: Convective parameterization. J. Atmos. Sci., 37, 1722-1732.   DOI
10 Grell, G. A., 1993: Prognostic evaluation of assumptions used by cumulus parameterizations. Mon. Wea. Rev., 121, 764-787.   DOI   ScienceOn
11 Grell, G. A. and D. Devenyi, 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett., 29, 1693-1696.
12 Hong, S.-Y. and J.-O. J. Lim, 2006: The WRF Single-Moment 6-Class Microphysics Scheme (WSM6). J. Korean Meteor. Soc., 42, 129-151.
13 Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318-2341.   DOI   ScienceOn
14 Janjic, Z. I., 1994: The step-mountain eta coordinate model: further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927-945.   DOI   ScienceOn
15 Kain, J. S. and M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 2784-2802.   DOI
16 Kalb, M. W., 1987: The role of convective parameterization in the simulation of a Gulf coast precipitation system. Mon. Wea. Rev., 115, 214-234.   DOI
17 Kuo, H. L., 1974: Further studies of the parameterization of the influence of cumulus convection on large-scale flow. J. Atmos. Sci., 31, 1232-1240.   DOI
18 Lee, D. K. and J. G. Park, 2002: A comparison study of moist physics schemes in simulation of East Asian heavy rainfall, J. of Korean Meteo. Soc., 38, 581-592.
19 Lean, H. W., P. A. Clark, M. Dixon, N. M. Roberts, A. Fitch, R. Forbes, and C. Halliwell, 2008: Characteristics of high resolution versions of the Met Office Unified Model for forecasting convection over the United Kingdom. Mon. Wea. Rev., 136, 3408-3424.   DOI   ScienceOn
20 Molinari, J. M. and M. Dudek, 1986: Implicit versus explicit convective heating in numerical weather prediction models. Mon. Wea. Rev., 114, 326-344.
21 Molinari, J. M. 1992: Parameterization of convective precipitation in mesoscale numerical models: A critical review. Mon. Wea. Rev., 120, 326-344.   DOI
22 Olson, D. A., N. W. Junker, and B. Korty, 1995: Evaluation of 33 years of quantitative precipitation forecasting at the NMC. Wea. Forecasting, 10, 498-511.   DOI
23 Park, Y.-Y. and T.-Y. Lee 2001: Role of parameterized convection in the simulation of heavy rain over the Korean peninsula, Proceedings of International Workshop on Next Generation NWP Model, 40-46.
24 Petch, J. C., 2006: Sensitivity studies of developing convection in a cloud-resolving model. Quart. J. Roy. Meteor. Soc., 132, 345-358.   DOI   ScienceOn
25 Snsi, S., P. Bougeault, J. che'ze, P. Cosentino, and R. Thepenier, 1996: The Vason-La-Pomaine flash flood: Mesoscale analysis and predictability issues. Wea. Forecasting, 11, 417-442.   DOI   ScienceOn
26 Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, 2005: A description of the Advanced Research WRF Version 2. NCAR Tech Notes-468+STR.
27 Tao, W.-K., D. Starr, A. Hou, P. Newman, and Y. sud, 2003: A cumulus parameterization workshop. Bull. Amer. Meteor. Soc., 84, 1055-1062   DOI   ScienceOn
28 Wang, W. and N. L. Seaman, 1997: A comparison study of Convective Parameterization Schemes in a Mesoscale Model. Mon. Wea. Rev., 125, 252-278.   DOI   ScienceOn
29 Zhang, D.-L., E.-Y. Hsie, and M. W. Moncrieff, 1988: A comparison of explicit and implicit prediction of convective and stratiform precipitating weather systems with a meso-${\beta}$-scale numerical model. Quart. J. Roy. Meteor. Soc., 114, 31-60.
30 Zheng, Y., Q. Xu, and D. J. Stensrud, 1995: A numerical simulation of the 7 May 1985 mesoscale convective system. Mon. Wea. Rev., 123(6), 1781-1799.   DOI   ScienceOn