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A B S T R A C T

Researchers have applied theoretical and CFD models for years to analyze the fluidelastic instability (FEI) of
tube arrays in steam generators and other heat exchangers. The accuracy of each approach has typically been
evaluated using the discrepancy between the experimental critical flow velocity and the predicted value. In the
best cases, the predicted critical flow velocity was within an order of magnitude comparable to the measured
one. This paper revisits the quasi-steady approach for damping controlled FEI in a normal triangular array with
a pitch ratio of 𝑃∕𝑑 = 1.375. The method addresses the fluidelastic frequency at the stability threshold as an
input parameter for the approach. The excellent agreement between the estimated stability thresholds and the
equivalent experimental results suggests that the fluidelastic frequency must be included in the quasi-steady
analysis, which requires minimal computing time and experimental data. In addition, the model allows a simple
time delay analysis regarding flow convective and viscous effects.
1. Introduction

Fluidelastic instability (FEI) is the most perilous vibration excitation
mechanism for steam generators and heat exchanger tube arrays in a
cross-flow. It is equally important for liquid, gas and two-phase cross-
flow and can be destructive in a matter of hours [1]. The response
of a tube subjected to FEI is characterized by a rapid increase in
vibration amplitude in the cross-flow direction at a critical flow velocity
when energy is transferred from the flow to the tube. This critical
flow velocity is one of the principal design criteria and is a limiting
factor for power output in a nuclear steam generator during stretch-out
operation [2]. Indeed, the nuclear power industry has led the way in the
research of flow-induced vibration of tube bundles for several decades,
and these efforts were summarized in the literature [3,4]. Despite
the progress in FEI understanding, design guidelines are driven by a
quasi-static model in the form of Connors’ equation, and researchers
still attempt to find the ‘‘correct’’ values of Connors’ constant [5,6].
However, many deficiencies are associated with Connors’ equation, and
better design rules must be sought [7].

FEI is predominantly geometry-dependent, and there are differences
in the dynamic behaviour of various tube arrays. The ratio of the centre-
to-centre distance between tubes to tube diameter 𝑃∕𝑑 is typically
1.25 to 2.00. Two distinct mechanisms have been recognized over the
years: a fluidelastic stiffness mechanism associated with the fluidelastic
coupling of adjacent tubes with at least two degrees of freedom and a
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negative fluid damping mechanism for a system with a single degree of
freedom (sdof) [8,9]. Two mechanisms generally coexist and overlap
over different ranges of mass-damping parameters (𝑚𝛿∕𝜌𝑑2) [10]. Many
researchers have used a single flexible tube in the middle of a rigid
array to investigate FEI [11–13]. The concept of testing using a single
flexible tube is based on the experimental observations that, in some
cases, a single flexible tube placed in a rigid tube array undergoes FEI
at the same critical flow velocity as a fully flexible tube array [14].
While this approach has some limitations, it has substantial benefits
for developing a clearer insight into the FEI mechanism [11,15]. A
sdof tube, free to oscillate in a cross-flow, is a weakly nonlinear system
with a crucial effect of nonlinear damping on limit cycle oscillations in
the post-stable behaviour [13,16]. Sdof fluidelastic systems are usually
linearized and require minimum empirical inputs to investigate the
stability threshold [10,17–19]. Probably the best models are based on
the unsteady fluid dynamic force measurements, where the dynamic
character of FEI is fully captured [20,21]. Unfortunately, as generally
accepted, this is done at the expense of an extensive experimental
campaign, which makes these approaches, which are otherwise accu-
rate, impractical as a design tool for various tube array configurations.
In contrast, CFD analysis shows considerable promise as a prediction
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Nomenclature

Symbols

𝛿 Logarithmic decrement
𝑚𝛿
𝜌𝑑2

Mass-damping parameter (ratio)
j Imaginary unit
𝜇 Dimensionless parameter associated with

time delay
𝜈 Kinematic viscosity
𝜔 Frequency in rad/s
𝜌 Flow density
𝜏 Time delay
𝑎 Ratio of gap flow velocity to free stream

flow velocity
𝐴,𝐵, 𝐶,𝐷 Calculation parameters
𝑏 Mechanical damping coefficient
𝐶𝐿 Static lift coefficient
𝐶𝐷 Static drag coefficient
𝑑 Tube diameter
𝑓 Frequency in Hz
𝐹𝑦 Fluidelastic force in 𝑦-direction
𝑘 Mechanical stiffness coefficient
𝐿 Characteristic length scale for viscous ef-

fects
𝑙 Tube length
𝑚 Mass of tube per unit length
𝑃 Pitch separation between tubes
𝑅𝑒 Reynolds number 𝑅𝑒 = 𝑈𝑑

𝜈
𝑡 Time
𝑈 Flow velocity
𝑌 Displacement amplitude
𝑦 Tube displacement

Subscripts

0 Equilibrium position
∞ Free stream
𝑐𝑟 Critical
𝑔 Gap
𝑁 Natural
𝑝 Predicted
𝑇 Total

tool, but in some cases, it still needs to be capable of giving accurate
predictions [22].

This study revisits the quasi-steady model, a theory of FEI of a
sdof tube that assumes an essential constant time delay between tube
displacement and the fluidelastic force generated thereby [18]. Several
models and explanations of the origin of the time delay exist [10,14,17–
19,23–25], and the current model estimates the time delay based on
available experimental data. Even though the quasi-steady model with
constant time delay is a simplified approach, it gives qualitatively
correct predictions of the critical flow velocities [11,26]; therefore,
some improvement of the approach is possible. The simple threshold
of instability presented in [10] is insensitive to the frequency of oscil-
lation in the fluid medium concerned — something that has perplexed
researchers in the past [4]. The present technique uses the oscillation
frequency of the tube in the fluid at the stability threshold as an input
parameter.
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2. Mathematical background

All tubes are considered rigid except the central one, which is also
rigid, but flexibly mounted. The equation for the motion of the tube
in the y-direction (cross-flow) excited by aerodynamic force 𝐹𝑦 may be
written as Eq. (1),

𝑚𝑙�̈� + 𝑏�̇� + 𝑘𝑦 = 𝐹𝑦 (1)

where 𝑙 is the length of the tube of mass 𝑚 per unit length, 𝑏 and 𝑘 are
the effective mechanical damping and stiffness of the tube, respectively.
According to the quasi-steady theory, the aerodynamic forces acting
on the oscillating tube are approximately the same as the aerostatic
forces at each point of the oscillation cycle. This approach applies to
most cases of instability of tube arrays in an air cross-flow, where fluid
inertia can be neglected [27]. A time delay 𝜏 exists between the tube
displacement 𝑦 and the aerodynamic forces generated thereby [10,18].
The time delay 𝜏 is artificially inserted to force 𝐹𝑦 and applied only to
he position-dependent term of the fluid force as expressed by Eq. (2),

𝑦 =
1
2
𝜌𝑈2𝑙𝑑

[

𝑒−j𝜔𝜏
(

𝜕𝐶𝐿
𝜕𝑦

)

𝑦 − 𝐶𝐷0

(

�̇�
𝑈

)]

(2)

where 𝑈 is the local oncoming flow velocity (usually gap flow velocity),
𝑑 is the tube diameter, 𝜌 is the flow density, 𝜔 is the tube frequency in
rad/s, 𝐶𝐷0

is the static drag coefficient about the equilibrium position
nd 𝜕𝐶𝐿/𝜕𝑦 is the static lift coefficient differentiation in the 𝑦-direction.

Similarly to the original study, 𝐶𝐷0
and 𝜕𝐶𝐿/𝜕𝑦 are not Reynolds

number (𝑅𝑒) functions due to a lack of experimental data [18].
Eqs. (1) and (2) are combined and rewritten as Eq. (3) with 𝜔𝑁 as

the natural frequency of the oscillating tube and 𝛿 as the logarithmic
decrement.

�̈� +
[

( 𝛿
𝜋

)

𝜔𝑁 + 1
2

(

𝜌𝑈𝑑
𝑚

)

𝐶𝐷0

]

�̇�

+
[

𝜔2
𝑁 − 1

2

(

𝜌𝑈2𝑑
𝑚

)(

𝜕𝐶𝐿
𝜕𝑦

)

𝑒−j𝜔𝜏
]

𝑦 = 0
(3)

For harmonic oscillations, 𝑦 = 𝑌 𝑒j𝜔𝑡, the total damping 𝑏𝑇 is defined
by the following expression in Eq. (4).

𝑏𝑇 =
( 𝛿
𝜋

)

𝜔𝑁𝜔 + 1
2

(

𝜌𝑈𝑑
𝑚

)

𝐶𝐷0
𝜔

+ 1
2

(

𝜌𝑈2𝑑
𝑚

)(

𝜕𝐶𝐿
𝜕𝑦

)

sin(𝜔𝜏)
(4)

At the instability threshold, when the flow velocity is critical, 𝑈 =
𝑈𝑐𝑟 (also 𝜔 = 𝜔𝑐𝑟), the total damping of the fluidelastic system is zero,
hence the instability is associated with 𝑏𝑇 = 0. Moreover, the remainder
of Eq. (3) represents a coupling between the natural frequency of the
tube 𝜔𝑁 (no flow) and the tube frequency 𝜔𝑐𝑟 at the critical flow
velocity 𝑈𝑐𝑟 as given by Eq. (5).

−𝜔2
𝑐𝑟 + 𝜔2

𝑁 − 1
2

(

𝜌𝑈2
𝑐𝑟𝑑
𝑚

)

(

𝜕𝐶𝐿
𝜕𝑦

)

cos(𝜔𝑐𝑟𝜏) = 0 (5)

Eqs. (4) and (5) can be simplified as Eq. (6),

𝑈2
𝑐𝑟 sin(𝜔𝑐𝑟𝜏) +

𝐵
𝐴
𝑈𝑐𝑟 +

𝐶
𝐴

=0

𝑈2
𝑐𝑟 cos(𝜔𝑐𝑟𝜏) +

𝐷
𝐴

=0
(6)

where 𝐴 = 1
2

(

𝜌𝑑
𝑚

)(

𝜕𝐶𝐿
𝜕𝑦

)

, 𝐵 = 1
2

(

𝜌𝑑
𝑚

)

𝐶𝐷0
𝜔𝑐𝑟, 𝐶 = 𝛿

𝜋𝜔𝑁𝜔𝑐𝑟 and
𝐷 = 𝜔2

𝑐𝑟 − 𝜔2
𝑁 .

Eq. (6) can be solved for two unknown variables 𝑈𝑐𝑟 and 𝜏, which
re evaluated numerically, provided 𝜔𝑁 and 𝜔𝑐𝑟 are known. In this
pproach, the oscillation frequency at the instability threshold in the
luid concerned is included in the calculation. The objective is not to
etermine the vibration frequency at the critical flow velocity but to
ssess the effect of this vibration frequency on the critical flow velocity
stimate. In addition, fluid force coefficients and critical flow veloci-

ies are ideally measured on the same wind tunnel and in the same
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Fig. 1. Cross-flow vibratory response of the flexible tube in row 4 for 𝑚∕𝜌𝑑2 = 2370,
𝑁 = 5.11 Hz and 𝛿 = 0.045, (upper) Variation of the dimensionless displacement,
lower) Variation of the normalized natural frequency.
ource: Reproduced from [28].

ocation. The fluid force coefficients 𝐶𝐷0
and 𝜕𝐶𝐿/𝜕𝑦 are the essential

input parameters to the model. Different fluid force coefficients can be
expected for the different tube rows as the flow takes a few tube rows
to develop fully in a tube bank. The literature typically provides fluid
force coefficients measured in the middle of the tube array. Few studies
detail the trends of the natural frequency of a vibrating tube in a fluid.

3. Results

3.1. Tested datasets and predicted critical flow velocities

A normal triangular seven-row tube array with a pitch-to-diameter
ratio of 𝑃∕𝑑 = 1.375 (𝑑 = 0.0254 m) was comprehensively tested
in [28], and FEI was observed predominantly in the cross-flow direc-
tion. A typical variation of the dimensionless displacement and the
normalized natural frequency with the reduced upstream flow velocity
is shown in Fig. 1. From these plots, the oscillation frequency at the
instability threshold 𝜔𝑐𝑟 can easily be extracted. Please note that the
increasing fluidelastic frequency against the increasing flow velocity is
derived only from the increasing positive linear fluid stiffness since an
added mass can be neglected in the case of the air [13,16].

In the first step, 12 tests are selected due to the available frequency
and stability threshold plots and the cross-flow direction of instability
for row 4 in the middle of the tube array under investigation, see
Table 1. In addition, the experimentally acquired fluid force coefficients
related this tube array configuration are taken from the literature [19].
In particular, based on the local approach velocity, the static drag
coefficient in the position of equilibrium is 𝐶𝐷0

= 3.8∕𝑎2, and the static
lift coefficient differentiation in the 𝑦-direction is 𝜕𝐶𝐿/𝜕�̄� = −19.2∕𝑎2

with 𝑎 = 𝑈𝑔∕𝑈∞ = (𝑃∕𝑑)∕(𝑃∕𝑑 − 1) and �̄� = 𝑦∕𝑑.
Experimental data are compared with the obtained results for all

the mass ratios, damping parameters and frequency ratios specified
in Table 1. Fig. 2 shows the predicted reduced critical flow veloci-
ties 𝑈𝑝𝑔𝑐𝑟∕𝑓𝑁𝑑 and the equivalent experimental results 𝑈𝑔𝑐𝑟∕𝑓𝑁𝑑 =
𝑎𝑈∞𝑐𝑟∕𝑓𝑁𝑑, both primarily in excellent agreement. By defining an error
𝛥 = (𝑈𝑝𝑔𝑐𝑟 − 𝑈𝑔𝑐𝑟)∕𝑈𝑔𝑐𝑟, the magnitude of error is higher than 10% in
two cases only and less than 5% in half of the cases. The minimum
error is 𝛥 = −0.8%, and the maximum error is 𝛥 = 41.3%; the negative
sign of 𝛥 means that the predicted values are underestimated. Excluding
test number 4R3, which has the lowest damping level 𝛿 = 0.009, the
model is capable of delivering accurate predictions for the critical flow
1456

velocity, and the results suggest that the frequency of the oscillation
Fig. 2. Stability map for a normal triangular array with 𝑃∕𝑑 = 1.375; current model
sensitive to the fluidelastic vibration frequency.

of the tube in the fluid concerned at the threshold of stability is an
important parameter for analyzing fluidelastic instability.

In the second step, in order to verify a systematic erroneous perfor-
mance of the proposed model for low levels of damping and enhance
the validation of the proposed model, experimental data across a
broader range are incorporated. Data for tube rows 2, 3, 5 and 6 are
hence considered and, for simplicity, the same fluid force coefficients
obtained in the middle of the array are considered because the relevant
experimental data are unavailable. The results for the additional 28
tests are summarized in Table 3 in Appendix. Overall, all findings ob-
tained by the current model are far superior to the original quasi-steady
approach. Only critical flow velocities for row 2 are overpredicted,
which can also be attributed to the fact that this row is still at the tube
array entry, and flow has no regular and repeating pattern as observed
in downstream rows [28]. The tests (3R1 and 611) with low damping
of 𝛿 = 0.008, similar to test number 4R3, show that no systematic
erroneous performance can be attributed to the proposed model for
these conditions. Further analysis is performed for row 4 in the middle
of the tube array, where the smallest mean error of predicted critical
flow velocities was evaluated.

3.2. Comparison with the original quasi-steady model

The stability threshold for the original quasi-steady model can be
estimated using Eq. (7) with 𝑓𝑁 = 𝜔𝑁∕2𝜋 and 𝜇 = 1 as a flow
retardation parameter for single-phase flows [10].

𝑈𝑐𝑟
𝑓𝑁𝑑

=

{

4
−𝐶𝐷0

− 𝜇𝑑
(

𝜕𝐶𝐿∕𝜕𝑦
)

}

𝑚𝛿
𝜌𝑑2

(7)

This simple model, insensitive to the fluidelastic frequency of oscilla-
tion, tends to overestimate the critical flow velocity in all test cases
significantly except for the single test case 4R3 with the lowest value
of damping 𝛿 = 0.009 as depicted in Fig. 3. The prediction errors are
tabulated in Table 1 (the last column), and the highest error 𝛥 = 192%
an be found for the logarithmic decrement 𝛿 = 0.14.

Finally, it is possible to render the current prediction model in-
ensitive to the fluidelastic frequency of oscillation and thus make a
irect comparison with the original quasi-steady model. The frequency
nsensitivity can be assumed by 𝜔𝑁 = 𝜔𝑐𝑟. Fig. 3 shows that the current

solution is more suitable as the stability boundary, but most critical
flow velocities are underestimated. Again, this finding emphasizes the
necessity of including the oscillation frequency to analyze the damping
controlled fluidelastic instability using the quasi-steady model.
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Table 1
Selected tests from [28] for row 4; measured and predicted stability boundaries and discrepancies.

Row Test ref. 𝑚
𝜌𝑑2 𝑓𝑁 [Hz] 𝛿 𝑚𝛿

𝜌𝑑2
𝜔𝑐𝑟

𝜔𝑁

𝑈∞𝑐𝑟

𝑓𝑁 𝑑
𝑈𝑔𝑐𝑟

𝑓𝑁 𝑑
𝑈𝑝𝑔𝑐𝑟

𝑓𝑁 𝑑
(Eq. (6)) 𝛥 [%] 𝑈𝑝𝑔𝑐𝑟

𝑓𝑁 𝑑
(Eq. (7)) 𝛥 [%]

4 416 279 16.1 0.086 24 1.04 9.8 35.9 36.7 2.1 83.8 133.2
4 4R9 300 10.4 0.22 66 1.28 28.5 104.5 103.5 −1 230.5 120.6
4 410 300 17.6 0.017 5 1 3 11 10.1 −8.2 17.5 58.7
4 4R6 300 15.9 0.049 15 1.01 5.6 20.5 21 2.3 52.4 155.1
4 4R8 300 15.9 0.081 24 1.06 13.2 48.4 46 −5 83.8 73.2
4 417 300 16 0.078 23 1.06 14.4 52.8 45.9 −13.1 80.3 52.1
4 4R7 300 15.9 0.14 42 1.05 13.7 50.2 45.3 −9.8 146.7 192
4 4R3 1030 10.9 0.009 9 1.02 8.8 32.3 45.6 41.3 31.4 −2.6
4 4R2 1030 9.92 0.036 37 1.06 21 77 84.2 9.4 129.2 67.8
4 4R4 1030 11.2 0.041 42 1.05 19.5 71.5 76.8 7.4 146.7 105.1
4 4R5 1030 11.1 0.065 67 1.09 27 99 103.9 4.9 234 136.3
4 415 2370 5.11 0.045 107 1.11 48 176.0 174.6 −0.8 373.7 112.3
𝜇
T
i
F
b

Fig. 3. Stability map for a normal triangular array with 𝑃∕𝑑 = 1.375; current model
insensitive to the fluidelastic vibration frequency.

Table 2
Selected tests from [28], calculated time delays, dimensionless parameters of flow
convective and viscous effects.

Test ref. 𝜏 [s] 𝜇 [−] 𝐿∕𝑑 [−]

416 0.0035 2.0741 0.0090
4R9 0.0019 1.9916 0.0066
410 0.0142 2.5290 0.0182
4R6 0.0071 2.3539 0.0128
4R8 0.0023 1.6954 0.0073
417 0.0022 1.6404 0.0072
4R7 0.0040 2.8779 0.0096
4R3 0.0015 0.7686 0.0060
4R2 0.0017 1.4349 0.0063
4R4 0.0020 1.7439 0.0069
4R5 0.0017 2.0077 0.0064
415 0.0021 1.9102 0.0071

Mean – 1.919 –

3.3. A time delay analysis

Time delay estimations are available using Eq. (6) and summarized
in Table 2 for all the twelve test cases. For simple interpretation, the
time delay 𝜏 is nondimensionalized by multiplication with the associ-
ted fluidelastic frequency and plotted against the predicted reduced
ocal critical flow velocity. The data trend in Fig. 4 means that the time
elay is inversely proportional to flow velocity. A similar behaviour was
bserved in an experimental quantification of the time delay [29], and
upports the proposition that the delay effect is due to some convection
rocess.

The estimated time delay values can be analyzed using flow convec-
ive and viscous effects. A characteristic time scale of flow convective
1457

w

Fig. 4. Dimensionless time delay against the predicted reduced local critical flow
velocity.

effects is expressed by Eq. (8),

𝜏 = 𝜇 𝑑
𝑈𝑔

(8)

where 𝜇 is the dimensionless parameter and 𝑑∕𝑈𝑔 is the time necessary
for the fluid to travel a distance equal to one tube diameter. This
parameter is explained by the flow retardation effect (i.e. viscous fluid
slows down as it nears the cylinder producing a time delay between the
cylinder displacement and the resultant change in the fluid forces) and
has a value of 𝜇 = 1 and  (1) [10,11]. Table 2 shows the parameter

calculated using the time delay estimated by the current method.
he estimates are reasonably consistent, and the mean value 𝜇 = 1.919

s reconsidered for the stability threshold prediction using Eq. (7).
ig. 5 shows the significant improvement of the stability map. It can
e concluded that the assumed value of 𝜇 = 1 was low; however, the

idea of the effect of flow retardation on fluid dynamics was sensible.
Similarly, a characteristic time scale of flow viscous effects to travel

a distance 𝐿 is expressed by Eq. (9) [30]. Considering kinematic
viscosity of air 𝜈 = 1.5 ∗ 10−5 m2/s (for typical laboratory conditions
at 20 ◦C and 𝜌 = 1.2 kg∕m3 in [28]), the characteristic length scale for
viscous effects 𝐿 can be evaluated from the estimated time delays and
nondimensionalized using the tube diameter 𝑑, see Table 2.

𝜏 = 𝐿2

𝜈
(9)

Fig. 6 depicts the dimensionless distance 𝐿∕𝑑 against the predicted
reduced local critical flow velocity. The values are significantly lower
than one, and this implies that the characteristic length 𝐿 could be
associated with a boundary layer thickness, which is usually very
small compared with 𝑑, and thus the time delay can be connected

ith viscous effects in the boundary layer rather than in a wake.
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Table 3
Selected tests from [28] for row 2, 3, 5 and 6; measured and predicted stability boundaries and discrepancies.

Row Test ref. 𝑚
𝜌𝑑2 𝑓𝑁 [Hz] 𝛿 𝑚𝛿

𝜌𝑑2
𝜔𝑐𝑟

𝜔𝑁

𝑈∞𝑐𝑟

𝑓𝑁 𝑑
𝑈𝑔𝑐𝑟

𝑓𝑁 𝑑
𝑈𝑝𝑔𝑐𝑟

𝑓𝑁 𝑑
(Eq. (6)) 𝛥 [%] 𝑈𝑝𝑔𝑐𝑟

𝑓𝑁 𝑑
(Eq. (7)) 𝛥 [%]

2 2R2 300 10.3 0.098 29.4 ≈1 6.1 22.4 23.4 4.6 101.3 352.8
2 2R3 300 9.87 0.55 165.0 1.12 14.2 52.1 73.4 41.0 576.2 1006.6
2 2R5 2370 7.21 0.008 19.0 1.005 6.2 22.7 37.0 62.8 66.3 191.9
2 2R4 2370 7.31 0.087 206.2 1.034 19.3 70.8 99.3 40.3 719.4 916.5
2 2R6 2370 7.31 0.29 687.3 1.15 37 135.7 211.1 55.6 2399.0 1668.3
3 3R7 300 11.1 0.087 26.1 1.005 8 29.3 22.7 −22.6 90.8 209.5
3 3R9 300 10.4 0.34 102.0 1.17 18.3 67.1 80.7 20.3 356.2 430.8
3 3R8 300 10.9 0.95 285.0 1.375 29 106.3 128.0 20.4 995.2 836.0
3 3R6 2370 4.67 0.15 355.5 1.16 47 172.3 214.3 24.4 1243.2 621.4
3 3R1 2370 7.19 0.008 19.0 1.005 10 36.7 37.0 0.9 66.3 81.0
3 3R5 2370 7.24 0.013 30.8 1.01 13 47.7 52.0 9.1 108.3 127.1
3 3R3 2370 7.16 0.041 97.2 1.03 20 73.3 90.5 23.4 338.7 361.9
3 3R2 2370 7.21 0.11 260.7 1.1 41 150.3 167.4 11.4 911.4 506.3
5 5R2 300 10.4 0.2 60.0 1.18 24.5 89.8 81.6 −9.2 209.5 133.2
5 5R5 300 10.5 0.21 63.0 1.18 25.8 94.6 81.6 −13.7 220.0 132.6
5 5R1 300 17.2 0.015 4.5 ≈1 3 11.0 9.5 −13.6 17.5 58.7
5 5R3 300 16.4 0.047 14.1 1.008 5.3 19.4 19.6 0.9 48.9 151.6
5 5R4 300 16.0 0.086 25.8 1.06 13.7 50.2 46.0 −8.4 90.8 80.7
5 5R7 2370 5.26 0.042 99.5 1.07 38 139.3 138.2 −0.8 349.2 150.6
5 5R8 2370 6.04 0.14 331.8 1.1 51 187.0 168.3 −10.0 1159.4 520.0
5 5R9 2370 7.19 0.011 26.1 1.11 48 176.0 174.4 −0.9 90.8 −48.40
6 6R5 300 16.7 0.013 3.9 ≈1 3.0 11.0 8.9 −19.1 14.0 27.0
6 6R3 300 16.3 0.058 17.4 1.006 5.5 20.1 19.7 −2.3 59.4 194.4
6 6R4 300 16.2 0.085 25.5 1.05 12.8 46.9 42.2 −10.1 90.8 93.5
6 6R8 338 41.4 0.0095 3.2 1.002 2.1 7.7 10.1 31.2 10.5 36.1
6 6R9 338 41.1 0.058 19.6 1.015 6.2 22.7 26.1 14.8 69.8 207.2
6 611 2370 7.02 0.008 19.0 1.006 10 36.7 40.3 9.9 66.3 81.0
6 6R2 2370 7.02 0.047 111.4 1.15 54 198.0 205.8 3.9 387.6 95.8
Fig. 5. Recalculation of the stability boundary based on flow convective effects.

Moreover, the data decay in Fig. 6 seems correct as the boundary
layer thickness reduces as Reynolds number increases [31]. However,
a detailed analysis of the time delay origin is beyond the scope of this
work.

4. Discussion

The effect of fluidelastic frequency on damping controlled fluide-
lastic instability prediction was assessed using a quasi-steady model. A
simple model was tested using available data on a normal triangular
array with 𝑃∕𝑑 = 1.375. The predicted critical flow velocities were
in excellent agreement with the experimental data, indicating the va-
lidity of this approach, meaning that the frequency of oscillation of
the tube in the fluid concerned at the threshold of stability must be
included when analyzing damping controlled fluidelastic instability.
This finding was confirmed by directly comparing the original quasi-
steady method and the current method configured to be insensitive to
1458
Fig. 6. Dimensionless characteristic length for viscous effects against the predicted
reduced local critical flow velocity.

the oscillation frequency. In both cases, the prediction of the stability
threshold was not satisfactory. In addition, the present model could
deliver the magnitude of the time delay, which was investigated using
flow convective and viscous effects. Although this analysis was not the
main objective of the work, it was shown that convective effects in
the form of flow retardation and viscous effects in the boundary layer
could be associated with the time delay, and further work is required as
various explanations of the time delay origin must be critically assessed.
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