• 제목/요약/키워드: Controller Reduction Technique

검색결과 77건 처리시간 0.028초

Feedback Controller Design for a In-plane Gimbaled Micro Gyroscope Using H-infinity and State Weighted Model Reduction Techniques

  • Song, Jin-Woo;Lee, Jang-Gyu;Taesam Kang;Kim, Yong-Kweon;Hakyoung Chung;Chang, Hyun-Kee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.39.3-39
    • /
    • 2002
  • In this paper, presented is a feedback control loop, for an in-plane gimbaled micro gyroscope based on methodology and state weighted model reduction technique. The micro gyroscope is the basic inertial sensors. To improve the performances such as stability, wide dynamic range, bandwidth and especially robustness, it is necessary to design a feedback control loop, which must be robust, because the manufacturing process errors can be large. Especially, to obtain wide bandwidth, the feedback controller is indispensable, because the gyroscope is high Q factor system and has small open loop bandwidth. Moreover, the feedback controller reduces the effect...

  • PDF

확률론적 Balance 방법을 이용한 제어용 모델의 축소 (Model Reduction using Stochastical Balance Technique)

  • 이동희;권동철;여운경;박성만;채교순;허훈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.988-992
    • /
    • 2007
  • Recently, dynamic system has been enlarged and is exposed to various types of disturbance. Thus designing controller for those dynamic system under random disturbance is not practically easy. As a result, the exact analysis for the system which is exposed to various irregular disturbance is quite important. In order to perform analysis, conventional BMR(Balanced Model Reduction) method is applied to moment equation in stochastic domain and reliable reduced order system model has been obtained.

  • PDF

확률론적 발란스 방법을 이용한 제어용 모델의 축소 (Model Reduction Using Stochastic Balance Technique)

  • 이동희;박성만;이종복;채교순;여운경;허훈
    • 한국소음진동공학회논문집
    • /
    • 제17권10호
    • /
    • pp.912-917
    • /
    • 2007
  • Recently, dynamic system has been enlarged and is normally exposed to various types of disturbance. Thus designing controller for these dynamic systems under random disturbance is not practically easy. As a result, the exact analysis for the system which is exposed to various irregular disturbance is quite important. In order to perform analysis, conventional BMR(balance model reduction) method is adopted and applied to moment equation in stochastic domain. Reliable reduced order system model has been obtained.

소규모 현장 오수처리시설의 유지관리를 위한 Monitoring System 개발 (Development of the Monitoring System for maintaining On-site Wastewater Treatment Plants)

  • 조영현;권순국
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2001년도 학술발표회 발표논문집
    • /
    • pp.417-420
    • /
    • 2001
  • The monitoring system for maintaining on-site wastewater treatment plants(Biofilter) was developed. Proposed system applied PLC(Programmable Logic Controller) technique. In process of development, the research against the monitoring parameters which will be able to represent condition and operation of the plants was accomplished. These parameters are ORP(Oxidation-Reduction Potential), Water Level, Pump and Power on/off. Also, to measure, collect, transfer and display these parameters, DMU(Data Measurement Unit), MCU(Main Controller Unit) and Display Board were produced.

  • PDF

최소 오버헤드를 갖는 IEEE 1149.1 TAP 테스트 기법에 관한 연구 (A Study on IEEE 1149.1 TAP Test Methodology for Minimum Area Overhead)

  • 김문준;장훈
    • 대한전자공학회논문지SD
    • /
    • 제41권11호
    • /
    • pp.61-68
    • /
    • 2004
  • 오늘날 모든 칩들에는 보드레벨 테스트를 위한 IEEE 1149.1 TAP 컨트롤러가 설계되어 내장된다. 하지만 최근에는 보드레벨 테스트뿐만 아니라 기능적 목적을 위해서 TAP 컨트롤러가 내장되는 경우도 다수 존재한다. 따라서 이러한 IEEE 1149.1 TAP 컨트롤러 회로를 테스트하고 모니터링 할 수 있는 동시 에러 검출 (CED: Concurrent Error Detection) 테스트 기법이 개발되었다. 본 논문에서는 기존에 제안된 여러 종류의 CED 테스트 기법을 IEEE 1149.1 TAP 컨트롤러에 적용하여 최적의 면적 오버헤드를 구현하는 기법에 대해 연구한다. 중복 기법과 패리티 예측 기법, 그리고 혼합 기법을 각각 연구하였으며, 혼합기법이 IEEE 1149.1 TAP 컨트롤러를 테스트하는 데 가장 적합한 CED 기법임을 실험을 통하여 알 수 있었다. 따라서 혼합기법은 앞으로 IEEE 1149.1 TAP 컨트롤러를 테스트하는 데 널리 사용될 수 있을 것이다. 또한 본 논문에서는 기존에 제안된 기법을 더욱 향상시켜 TAP 컨트롤러를 테스트하는 데에 소요되는 면적 오버헤드를 최소화 시켰다.

외란 관측기를 이용한 견실한 차량 안정성 제어 (Robust Vehicle Stability Control Using Disturbance Observer)

  • 한진오;이경수;강수준;이교일
    • 대한기계학회논문집A
    • /
    • 제26권12호
    • /
    • pp.2519-2526
    • /
    • 2002
  • A disturbance observer-based vehicle stability controller is proposed in this paper. The lumped disturbance to the vehicle yaw rate dynamics caused by the uncertain factors such as uncertain tire forces and parameters is estimated by the disturbance observer, which is utilized by the robust controller to stabilize the lateral dynamics of the vehicle. The dynamics of the hydraulic actuator is incorporated in the vehicle stability controller design using the model reduction technique. Modular control design methodology is adopted to effectively deal with the mismatched uncertainty. Simulation results indicate that the proposed disturbance observer-based vehicle stability controller can achieve the desired reference tracking performance as well as sufficient level of robustness.

Design of Output Regulator for Rejecting Periodic Eccentricity Disturbance in Optical Disc Drive

  • Shim, Hyung-Bo;Kim, Hyung-Jong;Chung, Chung-Choo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.452-457
    • /
    • 2003
  • An add-on type output regulator is proposed in this paper. By an add-on controller we mean an additional controller which operates harmonically with a pre-designed one. The role of the add-on controller is to reject a sinusoidal disturbance of unknown magnitude and phase but with known frequency. Advantages of the proposed controller include that (1) it can be used only when the performance of disturbance rejection needs to be enhanced, (2) when it is turned on or off, unwanted transient can be avoided (i.e., bumpless transfer), (3) it is designed for perfect disturbance rejection not just for disturbance reduction, (4) ability for perfect rejection is preserved even with uncertain plant model. This design may be promising for optical disc drive (ODD) systems in which disc eccentricity results in a sinusoidal disturbance. For ODD systems, the sensitivity function obtained by the pre-designed controller, which may have been designed by the lead-lag, $H_{\infty}$, or DOB (disturbance observer) technique, does not change much with the add-on controller except at the frequency of the disturbance. Since the add-on controller does the job of rejecting major eccentricity disturbance, the gain of the pre-designed controller does not have to be too high.

  • PDF

Novel ANFIS based SMC with Fractional Order PID Controller for Non Linear Interacting Coupled Spherical Tank System for Level Process

  • Jegatheesh A;Agees Kumar C
    • International Journal of Computer Science & Network Security
    • /
    • 제24권2호
    • /
    • pp.169-177
    • /
    • 2024
  • Interacting Spherical tank has maximum storage capacity is broadly utilized in industries because of its high storage capacity. This two tank level system has the nonlinear characteristics due to its varying surface area of cross section of tank. The challenging tasks in industries is to manage the flow rate of liquid. This proposed work plays a major role in controlling the liquid level in avoidance of time delay and error. Several researchers studied and investigated about reducing the nonlinearity problem and their approaches do not provide better result. Different types of controllers with various techniques are implemented by the proposed system. Intelligent Adaptive Neuro Fuzzy Inference System (ANFIS) based Sliding Mode Controller (SMC) with Fractional order PID controller is a novel technique which is developed for a liquid level control in a interacting spherical tank system to avoid the external disturbances perform better result in terms of rise time, settling time and overshoot reduction. The performance of the proposed system is obtained by analyzing the simulation result obtained from the controller. The simulation results are obtained with the help of FOMCON toolbox with MATLAB 2018. Finally, the performance of the conventional controller (FOPID, PID-SMC) and proposed ANFIS based SMC-FOPID controllers are compared and analyzed the performance indices.

무인운전 차량의 도어 및 PSD 제어 신호에 대한 연구 (Research for Signal Interfaces between DOORS of DRIVERLESS TRAIN and PSD Control)

  • 이희창;김동일;전상훈
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2010년도 춘계학술대회 논문집
    • /
    • pp.857-865
    • /
    • 2010
  • Recently the demand of the driverless rolling stock is increasing with advancement of the stable communication technique and control technique. The automatic train operating system has advantages which takes low operating cost and is able to dispose elastically in demand. Beside it provides high safety and effectiveness because it will be able to control power, signal and communication system from Operation Control Center and the safety and effectiveness are high. The establishment of PSD, Platform Screen Door, is advanced in the goal which is passenger safety, fire protection, noise and dust reduction etc. When but, two advanced systems also have risks of operation delay and accident when two systems are not controlled smoothly. Thus, I'll introduce control method between onboard controller, door control unit in rolling stock and PSD controller to help system design.

  • PDF

Shunt Active Filter for Multi-Level Inverters Using DDSRF with State Delay Controller

  • Rajesh, C.R.;Umayal, S.P.
    • Journal of Power Electronics
    • /
    • 제18권3호
    • /
    • pp.863-870
    • /
    • 2018
  • The traditional power control theories for the harmonic reduction methods in multilevel inverters are found to be unreliable under unbalanced load conditions. The unreliability in harmonic mitigation is caused by voltage fluctuations, non-linear loads, the use of power switches, etc. In general, the harmonics are reduced by filters. However, such devices are an expensive way to provide a smooth and fast response to secure power systems during dynamic conditions. Hence, the Decoupled Double Synchronous Reference Frame (DDSRF) theory combined with a State Delay Controller (SDC) is proposed to achieve a harmonic reduction in power systems. The DDSRF produces a sinusoidal harmonic that is the opposite of the load harmonic. Then, it injects this harmonic into power systems, which reduces the effect of harmonics. The SDC is used to reduce the delay between the compensation time for power injection and the generation of a reference signal. The proposed technique has been simulated using MATLAB and its reliability has been verified experimentally under unbalanced conditions.