• Title/Summary/Keyword: Control area network (CAN)

Search Result 513, Processing Time 0.032 seconds

Synchronization Control of Multiple Motors using CAN Clock Synchronization (CAN 시간동기를 이용한 복수 전동기 동기제어)

  • Khoa Do, Le Minh;Suh, Young-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.7
    • /
    • pp.624-628
    • /
    • 2008
  • This paper is concerned with multiple motor control using a distributed network control method. Speed and position of multiple motors are synchronized using clock synchronized distributed controllers. CAN (controller area network) is used and a new clock synchronization algorithm is proposed and implemented. To verify the proposed control algorithm, two disks which are attached on two motor shafts are controlled to rotate at the same speed and phase angle with the same time base using network clocks.

Performance Analysis of CAN-FD Based Network Against Network Topology (네트워크 토폴로지에 따른 CAN-FD 통신 영향성 분석)

  • Seo, Sukhyun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.6
    • /
    • pp.351-358
    • /
    • 2017
  • The most common communication interface for automotive electronic control devices is CAN (Controller Area Network). Sine CAN was first adopted to Daimler vehicles in 1991, all of automobile manufacturers use the CAN communication for in-vehicle networks. However, as the number of electronic control devices connected to the CAN network rapidly increases, the CAN protocol reaches the limit of technology. To overcome this limitation, Bosch introduced the new communication protocol, that is CAN-FD (Flexible Data-rate). In this paper, we analyze the characteristics and limitations of CAN-FD communication according to the topology under the in-vehicle wiring harness environment designed based on the existing classic CAN communication.

Development and Performance Evaluation of the CAN Monitoring System (CAN 모니터링 시스템 개발 및 성능 평가)

  • 이원희;박민규;이민철;김동수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.60-60
    • /
    • 2000
  • CAN(Controller Area Network) is a serial communication protocol which specifies very low cost and high performance. It is widely used in rea1-time control applications such as automobiles, aircraft, and automated factories. The main application fields are industrial control systems and embedded network. In this paper, the CAN monitoring system is proposed and implemented. Also its performance is tested in the mobile robot which is integrated by CAN and its performance lot receipt failure rate is evaluated. This can be used to analyze the performance of the network. It can tie also used to manage and monitor the network.

  • PDF

Multiplexing Control of Automobile Eletromotive Mirror System using CAN(Controller Area Network) Protocol (CAN(Controller Area Network) 프로토콜을 이용한 자동차용 전동 거울의 멀티플렉싱 제어)

  • Yoon, Sang-Jin;Choi, Goon-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.5110-5116
    • /
    • 2011
  • In this paper, multiplexing automation system will be proposed for the automobile electromotive mirror using CAN(Controller Area Network) protocol which has been known that it has a high reliability on the signal in the various network protocols. To do this, a master controller and two (input/output) slave controllers (H/W) are being made and application layer (S/W) is being programmed for effective going and communicating between subsystems. The possibility of the effectiveness of application and control ability will be shown when the system has minimum electrical lines by testing the experimental systems which was made up of the automobile electromotive mirror.

Network-Based Overhead Crane Control System Using Matrix Converters (매트릭스 컨버터를 사용한 네트워크 기반 천정형 크레인 제어 시스템)

  • Lee, Hong-Hee;Chun, Tae-Won
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.9-16
    • /
    • 2010
  • This paper presents supervisor control methods at a matrix converter controlled overhead crane system based on a controller area network (CAN). Four induction motors are used to drive the gantry, trolley, and hoist at he crane and each motor is controlled by the matrix converter with direct torque control (DTC). Both the position control algorithm and the supervisor control system using CAN are introduced. Simulation and experimental results are carried out to verify the performance of position control at the matrix converter controlled crane system.

Application of a CAN-Based Feedback Control System to a High-Speed Train Pressurization System (CAN기반 피드백 시스템의 고속전철 여압시스템 적용)

  • 김홍렬;곽권천;김대원
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.11
    • /
    • pp.963-968
    • /
    • 2003
  • A feedback control implementation for a high speed train pressurization system is proposed based on CAN (Controller Area Network). Firstly, system model including network latencies by CAN arbitration mechanisms is proposed, and an analytical compensation method of control parameters based on the system model is proposed for the network latencies. For the practical implementation of the control, global synchronization is adopted for controller to measure network latencies and to utilize them for the compensation of the control parameters. Simulation results are shown with practical tunnel data response. The proposed method is evaluated to be the most effective for the system through the control performances comparing among a controller not considering network latencies, other two off-line compensation methods, and the proposed method.

The Study on Position Synchronization for Multi-motors using Controller Area Network (CAN을 이용한 복수 전동기의 위치 동기화에 관한 연구)

  • 정의헌
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.464-467
    • /
    • 2000
  • In this paper we introduce the network based multi-motors control system using CAN(Controller Area Network) The traditional multi-motors control system has many problems in the view of reliability and economy because of the amount and complexity of wiring noise and maintenance problems etc, These problems are serious especially when the motor controllers are separated widely CAN is generally applied in car networking in order to reduce the complexity of the related wiring harnesses. These traditional CAN application techniques are modified to achieve the real time communication for the multi-motor control system. And also the position synchronization technique is developed and the proposed methods are verified experimentally.

  • PDF

Development of Intelligence Power Distribution Module with Control Area Network (CAN 통신을 이용한 IPDM(intelligence power distribution module) 개발)

  • Lee D.K.;Ko K.W.;Koh K.C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.37-38
    • /
    • 2006
  • In this paper, power distribution module for car relay control with Control area network is developed. This module is called Intelligent power distribution module because it has microprossor which can communicate with other electric module such as ECU and Body control module and also has self-diagonasis function. The developed IPDM module is tested on vehicle and the good performance has been achieved.

  • PDF

Control of Arago's Disk System using CAN (Controller Area Network) (CAM(Controller Area Network)을 이용한 아라고 원판 시스템 제어)

  • Lee, Won-Moo;Jung, Joon-Hong;Choi, Soo-Young;Park, Ki-Heon
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2325-2327
    • /
    • 2003
  • This thesis is concerned with the control of Arago's disk system using CAN(Controller Area Network). CAN protocol is used widely for the real time control in networked control systems(NCS). A networked control system using CAN is constructed to perform position control of Arago's disk. The mathematical model, of overall system is derived to design an appropriate controller analytical1y. Various operating points of the Arago's disk system in the real time control are chosen as stable region ($45^{\circ}$), marginal1y stable region($90^{\circ}$) and unstable region($120^{\circ}$), and the experiment for the position control of arago's disk system is done for each operating point. The performance of the suggested NCS is verified by experiments. It is shown that the NCS using CAN has stability and excel1ency in real time control.

  • PDF

A Study on Distributed Message Allocation Method of CAN System with Dual Communication Channels (중복 통신 채널을 가진 CAN 시스템에서 분산 메시지 할당 방법에 관한 연구)

  • Kim, Man-Ho;Lee, Jong-Gap;Lee, Suk;Lee, Kyung-Chang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.10
    • /
    • pp.1018-1023
    • /
    • 2010
  • The CAN (Controller Area Network) system is the most dominant protocol for in-vehicle networking system because it provides bounded transmission delay among ECUs (Electronic Control Units) at data rates between 125Kbps and 1Mbps. And, many automotive companies have chosen the CAN protocol for their in-vehicle networking system such as chassis network system because of its excellent communication characteristics. However, the increasing number of ECUs and the need for more intelligent functions such as ADASs (Advanced Driver Assistance Systems) or IVISs (In-Vehicle Information Systems) require a network with more network capacity and the real-time QoS (Quality-of-Service). As one approach to enhancing the network capacity of a CAN system, this paper introduces a CAN system with dual communication channel. And, this paper presents a distributed message allocation method that allocates messages to the more appropriate channel using forecast traffic of each channel. Finally, an experimental testbed using commercial off-the-shelf microcontrollers with two CAN protocol controllers was used to demonstrate the feasibility of the CAN system with dual communication channel using the distributed message allocation method.