• Title/Summary/Keyword: Control Gain Tuning

Search Result 248, Processing Time 0.022 seconds

Virtual PID Algorithm Tuning Technique and Data Analysis through Computer Simulation (컴퓨터 시뮬레이션을 통한 가상 PID 알고리즘 튜닝 기법과 데이터 분석)

  • Jin Moon Nam
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.875-882
    • /
    • 2023
  • In this paper, we propose a virtual tuning technique for a temperature controller using the PID algorithm. Virtual simulation on a computer was used using the mathematical expression of the control object. A technique for accurately calculating the gain of the PID algorithm was introduced through detailed computer data analysis, and superior performance compared to conventional experimental tuning results was verified. In addition, it has the advantage of replacing tuning experiments conducted on actual control subjects, so there are no temporal or spatial limitations. Tuning experiments that actually operate the control object do not show detailed data that appears during the process. The accuracy of the experiment could not be guaranteed, and the results could not be confirmed immediately. Through the proposed technique, the entire tuning process can be accurately checked on a computer and the cause of problems that occur can also be analyzed.

A Study on Gain Scheduling Programming with the Fuzzy Logic Controller of a 6-axis Articulated Robot using LabVIEW® (LabVIEW®를 이용한 6축 수직 다관절 로봇의 퍼지 로직이 적용된 게인 스케줄링 프로그래밍에 관한 연구)

  • Kang, Seok-Jeong;Chung, Won-Jee;Park, Seung-Kyu;Noe, Sung Hun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.4
    • /
    • pp.113-118
    • /
    • 2017
  • As the demand for industrial robots and Automated Guided Vehicles (AGVs) increases, higher performance is also required from them. Fuzzy controllers, as part of an intelligent control system, are a direct control method that leverages human knowledge and experience to easily control highly nonlinear, uncertain, and complex systems. This paper uses a $LabVIEW^{(R)}-based$ fuzzy controller with gain scheduling to demonstrate better performance than one could obtain with a fuzzy controller alone. First, the work area was set based on forward kinematics and inverse kinematics programs. Next, $LabVIEW^{(R)}$ was used to configure the fuzzy controller and perform the gain scheduling. Finally, the proposed fuzzy gain scheduling controller was compared with to controllers without gain scheduling.

The Design of a Position Controller for the Linear Brushless D.C. Motor Using New Auto-tuning PI control Method (새로운 Auto-Tuning PI 제어 방법을 이용한 선형 추진 브러시리스 직류 전동기에 대한 위치 제어기 설계)

  • 최중경;박승엽;전인효
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.1121-1124
    • /
    • 1999
  • Linear motor is able to produce line movement without rotary-to-line converter at the system required line moving. Thus Linear motor has no gear, screw, belt for line movement. Therefore it has some advantage which decrease friction loss, noise, vibration, maintenance effort and prevent decay of control performance due to backlash. This paper proposes the estimation method of unknown parameters from the BLDC Linear motor and determine the PI controller gain through this estimation. Each control movement that is current, speed, position control, and PWM wave generation is performed on Processor, which is DSP(Digital Signal Processor), having high speed performance. PI theory is adopted to each for controller for control behavior More fast convergence to command position is accomplished by applying the new velocity locus which derived from position error.

  • PDF

Optimal Gain Design Method of the 3 Phase Boost Converter (3상 부스트 컨버터의 제어기 최적 이득 설계 기법)

  • Park, Hae-Chan;Kim, Il-Song
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • The optimal gain design method of a three-phase boost converter is proposed in this study. The control system has a two-loop configuration, in which each controller is coupled closely; thus, the optimal design is difficult to achieve using conventional gain-tuning method. The proposed method is adopted to the MATLAB SISO TOOL software and is based on the controller requirements, which are phase margin and cut-off frequency of the open-loop system. The optimal proportional -integral gains can be designed easily using the proposed interactive method of the SISO TOOL. The performance of the proposed system is verified through simulation and experiments.

A study on The Fuzzy PID Controller for an gain self-tuning (이득동조를 위한 퍼지 PID 제어기의 연구)

  • 유상욱
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.37 no.3
    • /
    • pp.60-65
    • /
    • 2000
  • We propose a new method to deal with the optimal gain self-tuning of the PID controller which is used to industrial process control in various fields. First of all, in this method, first order delay system which was modeled from the unit step response of the system is Pade-approximated, then initial values are determined by the Ziegler-Nickels method. Finally, we can find the parameters of Pm controller so as to maximize the fuzzy inferencl function which includes the maximum overshoot, damping ratio, rising time and settling time. The proposed method also shows good adaptability for variations in characteristics and dead time of the system.

  • PDF

Improved Self-tuning Fuzzy PID Controller (향상된 자기동조 퍼지 PID 제어기)

  • Roh, Jae-Sang;Lee, Young-Seog;Suh, Bo-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.338-341
    • /
    • 1994
  • This paper presents a Fuzzy-PID controller based on Fuzzy logic. Up to now PID controller has had the difficulty of obtaining the optimal gain, and Fuzzy controller has had the difficulty of determining scale factor affecting the performance of control. So that a Fuzzy-PID controller is presented here self tuning of the scale factor and optimal gain. The results of simulation show a good performance in comparison with Ziegler-Nichols controller, having the generality of determining the components of scale factor in Fuzzy rule.

  • PDF

Active Vibration Control of Plates Using Filtered Velocity Feedback Controllers (Filtered Velocity Feedback 제어기를 이용한 평판 능동진동제어)

  • Shin, Chang-Joo;Hong, Chin-Suk;Jeong, Weui-Bong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.10
    • /
    • pp.940-950
    • /
    • 2011
  • This paper reports a filtered velocity feedback(FVF) controller, which is an alternative to direct velocity feedback(DVFB) controller. The instability problems at high frequencies due to non-collocated sensor/actuator configuration with the DVFB can be alleviated by the proposed FVF controller. The FVF controller is designed to filter out the unstable high frequency response. The dynamics of a clamped plate under forces and moments and the FVF controllers are formulated. The stability of the control system and performance are investigated with the open loop transfer function(OLTF). It is found that the FVF controller has a higher gain margin than the corresponding DVFB controller owing to the rapid roll-off behavior at high frequencies. Although the gain margin cannot be fully utilized because of the enhancement at the high frequencies, the vibration at the modes lower than the tuning frequency is well controlled. This performance of the FVF controller is shown to be improved from that of the DVFB controller. It is, however, noted that the stability around the tuning frequency is very sensitive so that the enhancement in vibration level should be followed. The reduction performance at low frequencies using the FVF controller should be compromised with the enhancement in the vibration at high frequencies while designing the controller.

Application of Fuzzy Logic to Sliding Mode Control for Robot Manipulators

  • Park, Jae-Sam
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.6
    • /
    • pp.14-19
    • /
    • 1997
  • In this paper, a new fuzzy sliding mode control algorithm is presented for trajectory control of robot manipulators. A fuzzy logic is applied to a sliding mode control algorithm to have the sliding mode gain adjusted continuously through fuzzy logic rules. With this scheme, te stability and the robustness of the proposed fuzzy logic control algorithm are proved and ensured by the sliding mode control law. The fuzzy logic controller requires only a few tuning parameters to adjust. Computer simulation results are given to show that the proposed algorithm can handle uncertain systems with large parameter uncertainties and external disturbances.

  • PDF

A PID learning controller for DC motors (DC 전동기를 위한 PID 학습제어기)

  • 백승민;이동훈;국태용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.347-350
    • /
    • 1996
  • With only the classical PID controller applied to control of a DC motor, a good (target) performance characteristic of the controller can be obtained, if all the model parameters of DC motor and operating conditions such as external load torque, disturbance, etc. are exactly known. However, in case when some of system parameters or operating conditions are uncertain or unknown, the fixed PID controller does not guarantee the good performance which is assumed with precisely known system parameters and operating conditions. In view of this and robustness enhancement of DC motor control system, we propose a PID learning controller which consists of a set of learning rules for PID gain tuning and learning of an auxiliary input. The proposed PID learning controller is shown to drive the state of uncertain DC motor system with unknown system parameters and external load torque to the desired one globally asymptotically. Computer simulation results are given to demonstrate the effectiveness of the proposed PID learning controller, thereby showing whose superiority to the conventional fixed PID controller.

  • PDF

Frequency and Amplitude Control of Micro Resonant Sensors (마이크로 공진형 센서의 주파수 및 진폭 제어)

  • Park, Sung-Su
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.3
    • /
    • pp.258-264
    • /
    • 2009
  • This paper presents two control algorithms for the frequency and amplitude of the resonator of a micro sensor. One algorithm excites the resonator at its a priori unknown resonant frequency, and the other algorithm alters the resonator dynamics to place the resonant frequency at a fixed frequency, chosen by the designer. Both algorithms maintain a specified amplitude of oscillations. The control system behavior is analyzed using an averaging method, and a quantitative criterion is provided for the selecting the control gain to achieve stability. Tracking and estimation accuracy of the natural frequency under the presence of measurement noise is also analyzed. The proposed control algorithms are applied to the MEMS dual-mass gyroscope without mechanical connecting beam between two proof-masses. Simulation results show the effectiveness of the proposed control algorithms which guarantee the proof-masses of the gyroscope to move in opposite directions with the same resonant frequency and oscillation amplitude.