• Title/Summary/Keyword: Continuous variable

Search Result 747, Processing Time 0.03 seconds

Antecedents and Outcome Variable and Mediating Effects of Continuous-Related Career Learning (지속경력학습의 선행 및 결과변인과 매개효과)

  • Ji, Sung-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.8
    • /
    • pp.564-578
    • /
    • 2015
  • The present study is aimed to investigate antecedents(person-job fit, human capital investment) and outcome variable(subjective career success) of continuous-related career learning, and to demonstrate mediating effects of continuous-related career learning. The data which was applied to analysis was collected from 241 office workers who have worked for automobile company in Ulsan and public companies in Jeju and applied temporal separation of measurement as an alternative for common method bias. The results are as follows. First, person-job fit, human capital investment affected to career-related continuous learning positively. Second, the impacts of career-related continuous learning to subjective career success was positively significant. Third, the mediating effects by career-related continuous learning demonstrated statistically significant in the links between antecedents-outcome variables as partial mediation. Implications of this study contribute to expand research area of continuous-related career learning with regard to job and organizational variables, and to facilitate of research interests on subjective career success. In addition, the mechanism of career advance was empirically proved by continuous-related career learning.

Optimal Screening Procedures with Dichotomous Performance and Continuous Screening Variables (이치형(二値型) 성능변수(性能變數) 대신 연속형(連續型) 변수(變數)를 이용(利用)한 최적(最適) 선별(選別) 검사방식(檢査方式))

  • Bae, Do-Seon;Kim, Sang-Bok;An, Sang-Sik
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.14 no.1
    • /
    • pp.83-89
    • /
    • 1988
  • Optimal screening procedures with dichotomous performance variable T and continuous screening variable X are presented for assuring with a specified degree of confidence that at least ${\ell}$ out of m items found acceptable in screening inspection are conforming. It is assumed that T is a Bernoulli random variable and that the conditional distribution of X given T=t is normal. When m is also to be determined, optimal m and cut-off value of X minimizing the total expected cost are obtained. Cases of known and unknown parameters are considered and for unknown parameter cases, Bayesian approaches are used to find the optimal screening procedures.

  • PDF

Design of Continuous Variable Structure Tracking Controller With Prescribed Performance for Brushless Direct Drive Drive Servo Motor

  • Lee, Jung-Hoon
    • Journal of Electrical Engineering and information Science
    • /
    • v.3 no.1
    • /
    • pp.58-66
    • /
    • 1998
  • A continuous, accurate, and robust variable structure tracking controller(CVSTC) is designed for brushless direct drive servo motors(BLDDSM). Although conventional variable structure controls can give the desired tracking performances, there exists an inevitable chattering problems in control input which is undesirable for direct drive systems. With the presented algorithm, not only the chattering problems are removed by using the efficient compensation of the disturbance observer, but also the prescribed tracking trajectory can be obtained using the sliding dynamics when an initial of the desired trajcetory is different from that of a BLDDSM. The design of the sliding mode tracking controller for the prescribed, accurate, and robust tracking performance without the chattering problem is given based on the results of the detailed stability analysis. The usefulness of the suggested algorithm is demonstrated through the computer simulation for a BLDDSM under load variations.

  • PDF

A Continuous Versatile Reed-Solomon Decoder with Variable Code Rate and Block Length (가변 부호율과 블록 길이를 갖는 연속 가변형 리드솔로몬 복호기)

  • 공민한;송문규
    • Proceedings of the IEEK Conference
    • /
    • 2003.07a
    • /
    • pp.549-552
    • /
    • 2003
  • In this paper, an efficient architecture of a versatile Reed-Solomon (RS) decoder is designed, where the message length k as well as the block length n can be variable. The decoder permits 3-step pipelined processing based on the modified Euclid's algorithm(MEA). A new architecture for the MEA is designed for variable values of error correcting capability t. To maintain the throughput rate with less circuitry, the MEA block uses both the recursive and the overclocking technique. The decoder can decode a codeword received not only in a burst mode, but also in a continuous mode. It can be used in a wide range of applications due to its versatility. A versatile RS decoder over GF(2$^{8}$ ) having the error-correcting capability of up to 10 has been designed in VHDL, and successfully synthesized in an FPGA chip.

  • PDF

The Control of Large Scale System by Sliding Mode (슬라이딩 모드를 이용한 대규모 계통의 제어)

  • Chun, Hee-Young;Park, Gwi-Tae;Kuo, Chun Ping;Kim, Dong-Sik;Im, Hyeong-Yong
    • Proceedings of the KIEE Conference
    • /
    • 1987.07a
    • /
    • pp.190-194
    • /
    • 1987
  • This paper describes a new method for control of large-scale system by sliding mode. The concepts of control to large-scale system on the basis of VSS(Variable Structure System) control theory are used to decompose a large control problem into a two-level algorithm such that each subsystem is stabilized with local discontinuous controllers and higher level corrective control is designed to take into account the effect of interaction among the subsystems. In this paper, we show that each subsystem is controlled with repect to local continuous and higher level corrective control. This algorithm can be easily applied to multi-variable control system and obtained a continuous control in comparison With variable structure control systems. Two numerical examples are discussed as illustrations.

  • PDF

Heat-Wave Data Analysis based on the Zero-Inflated Regression Models (영-과잉 회귀모형을 활용한 폭염자료분석)

  • Kim, Seong Tae;Park, Man Sik
    • Journal of the Korean Data Analysis Society
    • /
    • v.20 no.6
    • /
    • pp.2829-2840
    • /
    • 2018
  • The random variable with an arbitrary value or more is called semi-continuous variable or zero-inflated one in case that its boundary value is more frequently observed than expected. This means the boundary value is likely to be practically observed more than it should be theoretically under certain probability distribution. When the distribution considered is continuous, the variable is defined as semi-continuous and when one of discrete distribution is assumed for the variable, we regard it as zero-inflated. In this study, we introduce the two-part model, which consists of one part for modelling the binary response and the other part for modelling the variable greater than the boundary value. Especially, the zero-inflated regression models are explained by using Poisson distribution and negative binomial distribution. In real data analysis, we employ the zero-inflated regression models to estimate the number of days under extreme heat-wave circumstances during the last 10 years in South Korea. Based on the estimation results, we create prediction maps for the estimated number of days under heat-wave advisory and heat-wave warning by using the universal kriging, which is one of the spatial prediction methods.

Consideration of variable structure controller for robust control and its application to robot manipulator (강인한 제어를 위한 가볍 구조 제어기의 고찰 및 로봇 매니퓰레이터의 적용)

  • 남경태;박정일;이석규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.771-774
    • /
    • 1996
  • This paper presents a continuous time varying sliding surface that allows faster tracking and really guarantees robust contro land smooths control inputs. And this method is evaluated by applying to robot manipulator.

  • PDF

A tracking control of DC servomotors using a continuous VSS control (연속 가변 구조 제어를 이용한 직류 전동기의 추적 제어)

  • 이정훈;고종선;김종준;이주장;윤명준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.463-467
    • /
    • 1991
  • A continuous variable structure system control as a DC servomotor trackhig controller is proposed for the improvement of the chattering problems. The stability property of the proposed algorithms is analyzed. The prescribed trackfiig error is gauranteed in the existence of load variations based on the stability analysis.

  • PDF

Quantification Analysis Problem using Mean Field Theory in Neural Network (평균장 이론을 이용한 전량화분석 문제의 최적화)

  • Jo, Gwang-Su
    • The Transactions of the Korea Information Processing Society
    • /
    • v.2 no.3
    • /
    • pp.417-424
    • /
    • 1995
  • This paper describes MFT(Mean Field Theory) neural network with continuous with continuous variables is applied to quantification analysis problem. A quantification analysis problem, one of the important problems in statistics, is NP complete and arises in the optimal location of objects in the design space according to the given similarities only. This paper presents a MFT neural network with continuous variables for the quantification problem. Starting with reformulation of the quantification problem to the penalty problem, this paper propose a "one-variable stochastic simulated annealing(one-variable SSA)" based on the mean field approximation. This makes it possible to evaluate of the spin average faster than real value calculating in the MFT neural network with continuous variables. Consequently, some experimental results show the feasibility of this approach to overcome the difficulties to evaluate the spin average value expressed by the integral in such models.ch models.

  • PDF

New Continuous Variable Space Optimization Methodology for the Inverse Kinematics of Binary Manipulators Consisting of Numerous Modules (수많은 모듈로 구성된 이진 매니플레이터 역기구 설계를 위한 연속변수공간 최적화 신기법 연구)

  • Jang Gang-Won;Nam Sang Jun;Kim Yoon Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.10
    • /
    • pp.1574-1582
    • /
    • 2004
  • Binary manipulators have recently received much attention due to hyper-redundancy, light weight, good controllability and high reliability. The precise positioning of the manipulator end-effecter requires the use of many modules, which results in a high-dimensional workspace. When the workspace dimension is large, existing inverse kinematics methods such as the Ebert-Uphoff algorithm may require impractically large memory size in determining the binary positions of all actuators. To overcome this limitation, we propose a new inverse kinematics algorithm: the inverse kinematics problem is formulated as an optimization problem using real-valued design variables, The key procedure in this approach is to transform the integer-variable optimization problem to a real-variable optimization problem and to push the real-valued design variables as closely as possible to the permissible binary values. Since the actual optimization is performed in real-valued design variables, the design sensitivity becomes readily available, and the optimization method becomes extremely efficient. Because the proposed formulation is quite general, other design considerations such as operation power minimization can be easily considered.