Quantification Analysis Problem using Mean Field Theory in Neural Network

평균장 이론을 이용한 전량화분석 문제의 최적화

  • 조광수 (한국전자통신연구소 네트워크정합연구실)
  • Published : 1995.05.01

Abstract

This paper describes MFT(Mean Field Theory) neural network with continuous with continuous variables is applied to quantification analysis problem. A quantification analysis problem, one of the important problems in statistics, is NP complete and arises in the optimal location of objects in the design space according to the given similarities only. This paper presents a MFT neural network with continuous variables for the quantification problem. Starting with reformulation of the quantification problem to the penalty problem, this paper propose a "one-variable stochastic simulated annealing(one-variable SSA)" based on the mean field approximation. This makes it possible to evaluate of the spin average faster than real value calculating in the MFT neural network with continuous variables. Consequently, some experimental results show the feasibility of this approach to overcome the difficulties to evaluate the spin average value expressed by the integral in such models.ch models.

본 논문에서는 정량화(Quantification) 문제를 MFT(Mean Field Theroy)를 통해서 해결하는 기법을 제안한다. 통계학에서 중요한 문제의 하나인 정량화 문제는 주어진 공간에서 대상들간의 유사성에 따라서 최적의 상태를 갖도록 하는 문제이다. 평균장 접근 방법에 기초한 한개의 변수로 표현되는 확률적 시뮬레이티드 아닐링을 제안하고 정량화 문제를 패널티(penalty) 파라메타 항을 첨가한 비한정된 최적화 문제로 변형하 여 MFT를 적용하였다. 또한 연속변수를 갖는 신경회로망에서 실제 값을 계산하는 것 보다 평균장 접근방법으로 계산하는것이 더 빠르게 계산될 수 있음을 확인하였다. 본 논문에서 제안한 방법이 실험결과 해석적인 방법보다 좋은 정량적 결과를 보였다.

Keywords