• Title/Summary/Keyword: Contact thermal resistance

Search Result 267, Processing Time 0.031 seconds

"A Study on the formation of Cobalt Silicide and its Growth Rate by Rapid Thermal Annealing(RTA)" (RTA를 이용한 Cobalt Silicide의 형성 및 Growth Rate d에 관한 연구)

  • Kang, Eu-S.;Kim, H.W.;Hwang, Ho-J.
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.387-390
    • /
    • 1988
  • The increases in the packing density and the resulting shrinkage of silicon integrated circuit dimensions led to the investigation and successful of the deposited silicide layers as the gate and interconnection and contact metallization. In this paper evaporated Co films on n-Si have been rapid thermal annealed in $N_2$ambient at temperature of $400^{\circ}C-1000^{\circ}C$. The Co silicide formation is characterized by sheet resistance (4PP). Also, silicide growth rate and its reproductivity has been examined by SEM.

  • PDF

Formation of Ohmic Contacts on acceptor ion implanted 4H-SiC (이온 이온주입한 p-type 4H-SiC에의 오믹 접촉 형성)

  • Bahng, W.;Song, G.H.;Kim, H.W.;Seo, K.S.;Kim, S.C.;Kim, N.K.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.290-293
    • /
    • 2003
  • Ohmic contact characteristics of Al ion implanted n-type SiC wafer were investigated. Al ions implanted with high dose to obtain the final concentration of $5{\times}10^{19}/cm^3$, then annealed at high temperature. Firstly, B ion ion implanted p-well region were formed which is needed for fabrication of SiC devices such as DIMOSFET and un diode. Secondly, Al implanted high dose region for ohmic contact were formed. After ion implantation, the samples were annealed at high temperature up to $1600^{\circ}C\;and\;1700^{\circ}C$ for 30 min in order to activate the implanted ions electrically. Both the inear TLM and circular TLM method were used for characterization. Ni/Ti metal layer was used for contact metal which is widely used in fabrication of ohmic contacts for n-type SiC. The metal layer was deposited by using RF sputtering and rapid thermal annealed at $950^{\circ}C$ for 90sec. Good ohmic contact characteristics could be obtained regardless of measuring methods. The measured specific contact resistivity for the samples annealed at $1600^{\circ}C\;and\;1700^{\circ}C$ were $1.8{\times}10^{-3}{\Omega}cm^2$, $5.6{\times}10^{-5}{\Omega}cm^2$, respectively. Using the same metal and same process of the ohmic contacts in n-type SiC, it is found possible to make a good ohmic contacts to p-type SiC. It is very helpful for fabricating a integrated SiC devices. In addition, we obtained that the ratio of the electrically activated ions to the implanted Al ions were 10% and 60% for the samples annealed at $1600^{\circ}C\;and\;1700^{\circ}C$, respectively.

  • PDF

Thermal Design of a MR16 LED Light with the Effects of Ceiling Unit Mount (실링 유닛 장착효과를 고려한 MR16 LED 조명등 방열설계)

  • Hwang, Soon-Ho;Lee, Young-Lim
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3141-3147
    • /
    • 2010
  • The most important cause for shortening LED lighting efficiency and life is the junction temperature rises and, to solve this problem, various studies such as thermally efficient packaging, highly conductive material development, contact resistance improvement or heat sink optimization have been studied. However, most studies so far assumed that the LED lights are in the atmosphere, and thermal performance has not been therefore reported when the LED lights are mounted on the ceiling with ceiling unit. Thus, this study investigates the variation of junction temperature of the MR16 LED light under actual installation conditions and more accurate thermal design for the efficiency and life of LED lights is therefore achieved.

Sheet Resistance and Microstructure Evolution of Cobalt/Nickel Silicides with Annealing Temperature (코발트/니켈 복합실리사이드의 실리사이드온도에 따른 면저항과 미세구조 변화)

  • Jung Young-soon;Cheong Seong-hwee;Song Oh-sung
    • Korean Journal of Materials Research
    • /
    • v.14 no.6
    • /
    • pp.389-393
    • /
    • 2004
  • The silicide layer used as a diffusion barrier in microelectronics is typically required to be below 50 nm-thick and, the same time, the silicides also need to have low contact resistance without agglomeration at high processing temperatures. We fabricated Si(100)/15 nm-Ni/15 nm-Co samples with a thermal evaporator, and annealed the samples for 40 seconds at temperatures ranging from $700^{\circ}C$ to $1100^{\circ}C$ using rapid thermal annealing. We investigated microstructural and compositional changes during annealing using transmission electron microscopy and auger electron spectroscopy. Sheet resistance of the annealed sample stack was measured with a four point probe. The sheet resistance measurements for our proposed Co/Ni composite silicide was below 8 $\Omega$/sq. even after annealing $1100^{\circ}C$, while conventional nickel-monosilicide showed abrupt phase transformation at $700^{\circ}C$. Microstructure and auger depth profiling showed that the silicides in our sample consisted of intermixed phases of $CoNiSi_{x}$ and NiSi. It was noticed that NiSi grew rapidly at the silicon interface with increasing annealing temperature without transforming into $NiSi_2$. Our results imply that Co/Ni composite silicide should have excellent high temperature stability even in post-silicidation processes.

Effect of Hybrid Yarn Structure Composed of PP/Tencel/Quick dry PET on the Physical Property of Fabric for High Emotional Garment (PP/Tencel/흡한속건PET/하이브리드 복합사 구조가 고감성 의류용 직물의 물성에 미치는 영향)

  • Kim, Hyun Ah;Son, Hwang;Kim, Seung Jin
    • Fashion & Textile Research Journal
    • /
    • v.17 no.3
    • /
    • pp.462-475
    • /
    • 2015
  • This paper investigated the characteristics of the physical properties of woven fabrics according to the yarn structure and fibre property. It was found that wicking property of woven fabrics made of sheath/core hybrid yarn were better than those of siro spun and siro-fil hybrid yarns, which was caused by platform for transport of moisture vapor by filaments on the core part of sheath core hybrid yarns. In drying property, the fabric specimen woven by PP/Tencel sheath core hybrid yarns as a warp and Coolmax/Tencel spun yarn as a weft showed quick drying property, which was caused by the sheath core hybrid yarn structure as drainage of water moisture and coolmax fibre characteristics as quick dry material. Concerning to breathability and thermal conductivity as heat transport phenomena, it was observed that breathability of fabrics woven with hybrid yarns such as sheath core and siro-fil in the warp and hi-multi filaments in the weft showed the lowest water vapor resistance, which was explained as due to for air gap in the fibres of the spun yarns to restrict the wet heat transport from perspiration vapor. Thermal conductivities of the fabrics woven with PET/Tencel siro-fil yarns in the weft and hybrid yarns such as sheath core and siro-fil in the warp revealed the highest values, which was observed as due to higher thermal conductivity of PET than PP and more contact point between fibres in the siro-fil and sheath core hybrid yarns.

Fluxless Bonding Method between Sn and In Bumps Using Ag Capping Layer (Ag층을 이용한 Sn과 In의 무 플럭스 접합)

  • Lee Seung-Hyun;Kim Young-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.2 s.31
    • /
    • pp.23-28
    • /
    • 2004
  • We utilized Ag capping layer for fluxless bonding. To investigate the effect of Ag capping layer, two sets of sample were used. One set was bare In and Sn solders. The other set was In and Sn solders with Ag capping layer. In ($10{\mu}m$) and Sn ($10{\mu}m$) solders were deposited on Cu/Ti/Si substrate using thermal-evaporation, and Ag ($0.1{\mu}m$) capping layers were deposited on In and Sn solders. Solder joints were made by joining two In and Sn deposited specimens at $130^{\circ}C$ for 30 s under 0.8, 1.6, 3.2 MPa using thermal compression bonder. The contact resistance was measured using four-point probe method. The shear strength of the solder joints was measured by the shear test of cross-bar sample in the direction. The microstructure of the solder joints was characterized with SEM and EDS. In and Sn solders without Ag capping layers were only bonded at $130^{\circ}C$ under high bonding pressure. Also the shear strength of the In-Sn solder joints under was lower than that of the Ag/In-Ag/Sn solder joints. The resistance of the solder joints was $2-4\;m{\Omega}$ The solder joints consisted of In-rich phase and Sn-rich phase and the intermixed compounds were found at the interface. As bonding pressure increased, the intermixed compounds formed more.

  • PDF

Thermal and structural analysis of a cryogenic conduction cooling system for a HTS NMR magnet

  • In, Sehwan;Hong, Yong-Ju;Yeom, Hankil;Ko, Junseok;Kim, Hyobong;Park, Seong-Je
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.1
    • /
    • pp.59-63
    • /
    • 2016
  • The superconducting NMR magnets have used cryogen such as liquid helium for their cooling. The conduction cooling method using cryocoolers, however, makes the cryogenic cooling system for NMR magnets more compact and user-friendly than the cryogen cooling method. This paper describes the thermal and structural analysis of a cryogenic conduction cooling system for a 400 MHz HTS NMR magnet, focusing on the magnet assembly. The highly thermo-conductive cooling plates between HTS double pancake coils are used to transfer the heat generated in coils, namely Joule heating at lap splice joints, to thermal link blocks and finally the cryocooler. The conduction cooling structure of the HTS magnet assembly preliminarily designed is verified by thermal and structural analysis. The orthotropic thermal properties of the HTS coil, thermal contact resistance and radiation heat load are considered in the thermal analysis. The thermal analysis confirms the uniform temperature distribution for the present thermal design of the NMR magnet within 0.2 K. The mechanical stress and the displacement by the electromagnetic force and the thermal contraction are checked to verify structural stability. The structural analysis indicates that the mechanical stress on each component of the magnet is less than its material yield strength and the displacement is acceptable in comparison with the magnet dimension.

In-situ P-doped LPCVD Poly Si Films as the Electrodes of Pressure Sensor for High Temperature Applications (고온용 압력센서 응용을 위한 in-situ 인(P)-도핑 LPCVD Poly Si 전극)

  • Choi, Kyeong-Keun;Kee, Jong;Lee, Jeong-Yoon;Kang, Moon Sik
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.438-444
    • /
    • 2017
  • In this paper, we focus on optimization of the in-situ phosphorous (P) doping of low-pressure chemical vapor deposited (LPCVD) poly Si resistors for obtaining near-zero temperature coefficient of resistance (TCR) at temperature range from 25 to $600^{\circ}C$. The deposited poly Si films were annealed by rapid thermal anneal (RTA) process at the temperature range from 900 to $1000^{\circ}C$ for 90s in nitrogen ambient to relieve intrinsic stress and decrease the TCR in the poly Si layer and get the Ohmic contact. After the RTA process, a roughness of the thin film was slightly changed but the grain size and crystallinity of the thin film with the increase in anneal temperature. The film annealed at $1,000^{\circ}C$ showed the behavior of Schottky contact and had dislocations in the films. Ohmic contact and TCR of $334.4{\pm}8.2$ (ppm/K) within 4 inch wafer were obtained in the measuring temperature range of 25 to $600^{\circ}C$ for the optimized 200 nm thick-poly Si film with width/length of $20{\mu}m/1,800{\mu}m$. This shows the potential of in-situ P doped LPCVD poly Si as a resistor for pressure sensor in harsh environment applications.

Application of high voltage pulse for reduction of membrane fouling in membrane bio-reactor and kinetic approach to fouling rate reduction (막결합형 생물반응기(Membrane Bio-Reactor)의 막 오염 저감을 위한 고전압 펄스의 적용과 막 오염 저감 속도론적 해석)

  • Kim, Kyeong-Rae;Kim, Wan-Kyu;Chang, In-Soung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.3
    • /
    • pp.183-190
    • /
    • 2020
  • Although membrane bio-reactor (MBR) has been widely applied for wastewater treatment plants, the membrane fouling problems are still considered as an obstacle to overcome. Thus, many studies and commercial developments on mitigating membrane fouling in MBR have been carried out. Recently, high voltage impulse (HVI) has gained attention for a possible alternative technique for desalting, non-thermal sterilization, bromate-free disinfection and mitigation of membrane fouling. In this study, it was verified if the HVI could be used for mitigation of membrane fouling, particularly the internal pore fouling in MBR. The HVI was applied to the fouled membrane under different conditions of electric fields (E) and contact time (t) of HVI in order to investigate how much of internal pore fouling was reduced. The internal pore fouling resistance (Rf) after HVI induction was reduced as both E and t increased. For example, Rf decreased by 19% when the applied E was 5 kV/cm and t was 80 min. However, the Rf decreased by 71% as the E increased to 15 kV/cm under the same contact time. The correlation between E and t that needed for 20% of Rf reduction was modeled based on kinetics. The model equation, E1.54t = 1.2 × 103 was obtained by the membrane filtration data that were obtained with and without HVI induction. The equation states the products of En and t is always constant, which means that the required contact time can be reduced in accordance with the increase of E.

Rapid thermal annealing temperature effects on the ohmic behavior of the Pd/Ge-based contact to n-type InGaAs (n형 InGaAs에 형성된 Pd/Ge계 오믹 접촉 특성에 미치는 급속 열처리 온도의 영향)

  • 김일호;박성호;김좌연;이종민;이태우;박문평
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.1
    • /
    • pp.24-28
    • /
    • 1998
  • Pd/Ge ohmic contact system on n-type InGaAs was studied. A good ohmic begavior by rapid thermal annealing was shown up to $400^{\circ}C$, and the specific contact resistance was reduced to low-$10^-6\Omega\textrm{cm}^2$EX>. However, above $425^{\circ}C$ it was deteriorated by intermixing and phase reaction of ohmic metals and InGaAs substrate. No remarkable phase change was observed below $350^{\circ}C$, but the reaction was initiated at ~$375^{\circ}C$ and considerable phase change was found above $425^{\circ}C$. Non-spiking and planar interfaces were observed even when annealed at $425^{\circ}C$, and smooth and shiny surface was kept up to $400^{\circ}C$.

  • PDF