Browse > Article
http://dx.doi.org/10.5805/SFTI.2015.17.3.462

Effect of Hybrid Yarn Structure Composed of PP/Tencel/Quick dry PET on the Physical Property of Fabric for High Emotional Garment  

Kim, Hyun Ah (Korea Research Institute for Fashion Industry)
Son, Hwang (Songi Textile Co., Ltd.)
Kim, Seung Jin (Dept. of Textile Engineering and Technology, Yeungnam University)
Publication Information
Fashion & Textile Research Journal / v.17, no.3, 2015 , pp. 462-475 More about this Journal
Abstract
This paper investigated the characteristics of the physical properties of woven fabrics according to the yarn structure and fibre property. It was found that wicking property of woven fabrics made of sheath/core hybrid yarn were better than those of siro spun and siro-fil hybrid yarns, which was caused by platform for transport of moisture vapor by filaments on the core part of sheath core hybrid yarns. In drying property, the fabric specimen woven by PP/Tencel sheath core hybrid yarns as a warp and Coolmax/Tencel spun yarn as a weft showed quick drying property, which was caused by the sheath core hybrid yarn structure as drainage of water moisture and coolmax fibre characteristics as quick dry material. Concerning to breathability and thermal conductivity as heat transport phenomena, it was observed that breathability of fabrics woven with hybrid yarns such as sheath core and siro-fil in the warp and hi-multi filaments in the weft showed the lowest water vapor resistance, which was explained as due to for air gap in the fibres of the spun yarns to restrict the wet heat transport from perspiration vapor. Thermal conductivities of the fabrics woven with PET/Tencel siro-fil yarns in the weft and hybrid yarns such as sheath core and siro-fil in the warp revealed the highest values, which was observed as due to higher thermal conductivity of PET than PP and more contact point between fibres in the siro-fil and sheath core hybrid yarns.
Keywords
wicking and drying; sheath core hybrid yarns; siro-fil yarns; thermal conductivity; water vapor resistance;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Adler, M. M., & Walsh, W. H. (1984). Mechanism of transient moisture transport between fabrics. Textile Research Journal, 54(5), 334-343. doi:10.1177/004051758405400510   DOI
2 Bedez, T., & Ureyen, M. E. (2007). Spinning of short staple fibres by siro $spun^{(R)}$ system. Tekstil ve Konfeksiyon, 17(1), 31-35.
3 CSIRO, Cool light weight wools, Australia. Available from http://www.csiro.au/files/files/p9u3.pdf (assessed 14 September 2009).
4 Ghali, K., Jones, B., & Tracy, J. (1994). Experimental techniques for measuring parameters describing wetting and wicking in fabrics. Textile Research Journal, 64(2), 106-111. doi:10.1177/004051759406400206   DOI
5 Hiraku, I., & Yoichiro, M. (1993). Water transport along textile fibers as measured by an electrical capacitance technique. Textile Research Journal, 62(7), 414-420. doi:10.1177/004051759306300706   DOI
6 Hsieh, Y. L. (1995). Liquid transport in fabric structure. Textile Research Journal, 65(5), 299-307. doi:10.1177/004051759506500508   DOI
7 Icoglu, H. I., & Kirecci, A. (2011). Investigation of the fastness and color values of cotton fabrics knitted from ring spun and siro $spun^{(R)}$ yarns. Journal of Textile Institute, 102(2), 114-119. doi: 10.1080/00405000903549690   DOI
8 KSK ISO 11092: 2009 http://www.kats.go.kr.
9 Lee, A. (2006). Absorption desorption behavior of quick sweat-pick up/dry-fabric and assessment of subjective wetness using JND measurement. Unpublished master's thesis, Yonsei University, Seoul.
10 Lee, D. W., & Kim, E. A. (2001). The relationship between pore size distribution and liquid water transport of cotton and polyester fabrics. Journal of the Korean Society of Clothing and Textiles, 25(2), 379-388.
11 Liu, W. Y., Yu, Y. P., He, J. H., & Wang, S. Y. (2007a). Effect of strand-spacing between roving and filament on siro-fil yarn properties. Textile Research Journal, 77(4), 200-204. doi:10.1177/0040517507080614   DOI
12 Liu, W. Y., Yu, Y. P., He, J. H., & Wang, S. Y. (2007b). Effect of tension compensator on sirofil yarn properties. Textile Research Journal, 77(4), 195-199. doi:10.1177/0040517507080624   DOI
13 Liu, S., Liu, J., Jia, H., Liu, X., & Xu, B. (2012). Effect of sirospun spinning with a press bar top pin on gualities of flax/cotton blended yarn. Textile Research Journal, 82(10), 985-993. doi: 10.1177/0040517511427972   DOI
14 McGregor, B. A., & Naebe, M. (2013). Effect of fiber, yarn and knitted fabric attributes associated with wool comfort properties. Journal of Textile Institute, 104(6), 606-617. doi:10.1080/00405000.2013.770596   DOI
15 Miao, M., Barnes, S., & Vuckovic, L. (2010). High-speed video graphic study of filament-core yarn spinning. Journal of Textile Institute, 101(3), 242-252. doi:10.1080/00405000802376179   DOI
16 Nyoni, A. B., & Brook, D. (2006). Wicking mechanisms in yarns -the key to fabric wicking performance. Journal of Textile Institute, 97(2), 119-128. doi:10.1533/joti.2005.0128   DOI
17 Pack, S. L. (1995). Effect of yarn type and twist on air permeability, absorbancy, and hand properties of open-end and ring-spun yarn fabrics. Journal of Textile Institute, 86(4), 581-589. doi:10.1080/00405009508659036   DOI
18 Varshney, R. K., Kothari, V. K., & Dhamija, S. (2010). A study on thermophysiological comfort properties of fabrics in relation to constituent fibre fineness and cross-sectional shapes. Journal of Textile Institute, 101(6), 495-505. doi:10.1080/00405000802542184   DOI
19 Xia, Z., Wang, X., Ye, W., Eltahir, H. A., & Xu, W. (2012). Fiber trapping comparison of embeddable and locatable spinning with siro fil and siro core-spinning with flute pipe air suction. Textile Research Journal, 82(12), 1255-1262. doi:10.1177/0040517512439918   DOI
20 Zang, L. N., & He, J. H. (2009). Geometry condition for optimal twostrand yarn spinning part I: Siro spun. Textile Research Journal, 79(3), 243-246. doi:10.1177/0040517507080533   DOI
21 Patil, U. J., Kane, C. D., & Ramesh, P. (2009). Wickability behaviour of single-knit structure. Journal of Textile Institute, 100(5), 457- 465. doi:10.1080/00405000801893240   DOI
22 Pourahmad, A., & Johari, M. S. (2011a). Comparison of the properties of ring, solo, and siro core-spun yarns. Journal of Textile Institute, 102(6), 540-547. doi:10.1080/00405000.2010.498170   DOI
23 Pourahmad, A., & Johari, M. S. (2009b). Production of core spun yarn by three-strand modified method. Journal of Textile Institute, 100(3), 275-281. doi:10.1080/00405000701763865   DOI
24 Sawhney, A. P. S., Robert, K. Q., Ruppenicker, G. F., & Kimmel, L. B. (1992). Improved method of producing a cotton/polyester staple core yarn on a ring spinning frame. Textile Research Journal, 62(1), 21-25. doi:10.1177/004051759206200104   DOI
25 Soltani, P., & Johari, M. S. (2012). A study on siro-, solo-, compact-, and conventional ring spun yarns. Part II: yarn strength with relation to physical and structural properties of yarns. Journal of Textile Institute, 103(9), 921-930. doi:10.1080/00405000.2011.628117   DOI
26 Sun, M. N., & Cheng, K. P. S. (2000). Structure and properties of cotton sirospun yarn. Textile Research Journal, 70(3), 261-268. doi:10.1177/004051750007000314   DOI
27 Tashkandi, S., Wang, L., & Kanesalingam, S. (2013). An investigation of thermal comfort properties of Abaya woven fabrics. Journal of Textile Institute, 104(8), 830-837. doi:10.1080/00405000.2012.758351   DOI