• Title/Summary/Keyword: Contact 12 Element

Search Result 108, Processing Time 0.021 seconds

Dynamic Analysis of Rotor Systems Considering Ball Bearing Contact Mechanism (볼 베어링의 접촉 메커니즘을 고려한 회전체 시스템의 동적 해석)

  • Kim, YoungJin;Lee, Jongmahn;Oh, Dongho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.12
    • /
    • pp.1535-1540
    • /
    • 2013
  • We propose a finite element modeling method considering the ball bearing contact mechanism, and the developed method was verified through experimental and analytical results of inner and outer race-type rotor systems. A comparison of the proposed method with conventional method reveals that there is little difference in the results of the inner race-type rotor system, but there are considerable differences in the results of the outer race-type rotor system such that predictions of greater accuracy can be made. Therefore, the proposed method can be used for accurately predicting the dynamic characteristics of an outer race-type rotary machine.

Interface and Surface Properties by Surface Treatment of Zirconia for All Ceramic Crown (전부도재관용 지르코니아의 표면처리에 따른 표면특성 및 계면특성 관찰)

  • Kim, Chi-Young;Chung, In-Sung;Choi, Sung-Min
    • Journal of Technologic Dentistry
    • /
    • v.35 no.2
    • /
    • pp.137-142
    • /
    • 2013
  • Purpose: This study was to observe the surface and interfacial characteristic of Zirconia by surface treatment. And it was observed the roughness and contact angle according to processing, and the interfacial properties by surface treatment on zirconia. Methods: The oxide formation and ion diffusion between core and veneer ceramic were determined by the X-ray Dot Mapping of EPMA(Electron probe micro analyzer). The roughness was measured by 3D Digital microscope and the contact angle according to processing of zirconia was observed using distilled water on the surface. Results: The surface roughness of the specimens Z04, Z12, Z15 was measured $0.67({\pm}0.03){\mu}m$, $0.50({\pm}0.12){\mu}m$, $0.35({\pm}0.09){\mu}m$, respectively. As results of contact angle test, Z04, Z12, Z15 of specimen group without binder treatment was measured $46.79({\pm}3.17)^{\circ}$, $57.47({\pm}4.83)^{\circ}$, $56.19({\pm}2.66)^{\circ}$, respectively. but, L04, L12, L15 of specimen group without binder treatment was measured $63.84({\pm}2.20)^{\circ}$, $66.08({\pm}0.16)^{\circ}$, $65.10({\pm}1.01)^{\circ}$, respectively. Average contact angle of L15 was measured $65.10({\pm}1.01)^{\circ}$. In X-ray Dot Mapping results, thickness of binder including Al element was measured that each of L04, L12, L15 were $20{\mu}m$, $15{\mu}m$, $10{\mu}m$. Conclusion: The more rough surface increases the wettability, but the sintered exclusive binder decreases the wettability.

Optimal Design for Passive Magnetic Bearing Using PSO (PSO를 이용한 수동형 자기 베어링의 최적 설계)

  • Jeong, Hyeon-Seok;Joo, Young-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.12
    • /
    • pp.2319-2323
    • /
    • 2010
  • The existing contact-type bearings using rolling or sliding require continuous maintenance due to abrasion caused by friction and are not suitable for high-speed rotation and slimming. A magnetic bearing without contact can overcome such problems but the performance depends on the allocation of magnets and the structure of bearings. This paper proposes a method designing parameters of a passive magnetic bearing to improve levitation force. The proposed method employs Halbach array as the allocation of magnets, uses particle swam optimization to determine the structure of bearings. The numerical experiment shows that the levitation force is improved by the proposed method compared with the existing one using finite element analysis.

The Measurment Method of Small Deformation by using Holographic Interferometry (홀로그래픽 간섭법을 이용한 미소변형 측정법)

  • Kang, Young-June;Moon, Sang-Joon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.9
    • /
    • pp.52-58
    • /
    • 1995
  • Conventional measurement methods for non-destructive testing(NDT) in nuclear power plants and other industrial plants have been performed as the methods of contact with objects to be inspect, but those methods have been taken relatively much time to be inspected. Holographic interferometry which is a non-contact optical measurement method using a coherent light can overcome these demerit, and also has an advantage that the quantitative measurement of small deformation for large areas can be accomplished at a time with high precision. In this paper the comparisons of the experimental results form holographic interferometry with those from the finite element method(FEM) and the analytical solutions of the elastic equation are discussed.

  • PDF

Design of Vertical Type Probe Tip Using Finite Element Analysis (유한요소해석을 이용한 수직형 프로브 팁의 설계)

  • Oh, Young-Ryun;Kim, Yun-Jae;Nam, Hyun-Suk;Park, Ung-Gi;Lee, Hak-Joo;Kim, Jung-Yub;Park, Jun-Hyub
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.8
    • /
    • pp.851-856
    • /
    • 2012
  • The design process of a micro-probe tip is very complicated and expensive. To avoid these problems, in this study, we used element (FE) analysis. To simplify design process. A new pre-probe tip (cobra-needle type) made of Ni and Co was designed by FE analysis. Experimental results were compared with those obtained by FE analysis to verify the reliability of the analysis. The contact force and over drive were respectively found to be 12.5 gf(Contact Force) and $100{\mu}m$(Over drive). We propose the new designed probe tip. Material of new designed probe tip is NiCo. Values of Property are 1~2 gf(Contact Force) and $100{\mu}m$(Over drive).

Nonlinear finite element analysis of top- and seat-angle with double web-angle connections

  • Kishi, N.;Ahmed, A.;Yabuki, N.;Chen, W.F.
    • Structural Engineering and Mechanics
    • /
    • v.12 no.2
    • /
    • pp.201-214
    • /
    • 2001
  • Four finite element (FE) models are examined to find the one that best estimates moment-rotation characteristics of top- and seat-angle with double web-angle connections. To efficiently simulate the real behavior of connections, finite element analyses are performed with following considerations: 1) all components of connection (beam, column, angles and bolts) are discretized by eight-node solid elements; 2) shapes of bolt shank, head, and nut are precisely taken into account in modeling; and 3) contact surface algorithm is applied as boundary condition. To improve accuracy in predicting moment-rotation behavior of a connection, bolt pretension is introduced before the corresponding connection moment being surcharged. The experimental results are used to investigate the applicability of FE method and to check the performance of three-parameter power model by making comparison among their moment-rotation behaviors and by assessment of deformation and stress distribution patterns at the final stage of loading. This research exposes two important features: (1) the FE method has tremendous potential for connection modeling for both monotonic and cyclic loading; and (2) the power model is able to predict moment-rotation characteristics of semi-rigid connections with acceptable accuracy.

Measures of micromotion in cementless femoral stems-review of current methodologies

  • Solitro, Giovanni F;Whitlock, Keith;Amirouche, Farid;Santis, Catherine
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.3 no.2
    • /
    • pp.85-104
    • /
    • 2016
  • Stability and loosening of implanted femoral stems in Total Hip Replacement have been well established as barriers to the primary concerns of osseointegration and long term implant survival. In-vitro experiments and finite element modeling have for years been used as a primary tool to assess the bone stem interface with variable methodologies leading to a wide range of micromotion, interference fit and stress shielding values in the literature. The current study aims to provide a comprehensive review of currently utilized methodologies for in-vitro mechanical testing as well as finite element modeling of both micromotion and interference of implanted femoral stems. A total of 12 studies detailed in 33 articles were selected for inclusion. Experimental values of micromotion ranged from 12 to $182{\mu}m$ while finite element analysis reported a wider range from 2.74 to $1,277{\mu}m$. Only two studies were found that modeled bone/implant contact with consideration for interference fit. In studies evaluating stem micromotion in THA, the reference surface at the bone/stem interface should be well defined. Additionally, the amount of penetration considered should be disclosed and associated with bone density and roughness.

Corrosion characteristics and interfacial contact resistances of TiN and CrN coatings deposited by PVD on 316L stainless steel for polymer electrolyte membrane fuel cell bipolar plates

  • Lee, Jae-Bong;Oh, In Hwan
    • Corrosion Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.171-178
    • /
    • 2013
  • In a polymer membrane fuel cell stack, the bipolar plate is a key element because it accounts for over 50% of total costs of the stack. In order to lower the cost of bipolar plates, 316L stainless steels coated with nitrides such as TiN and CrN by physical vapor deposition were investigated as alternative materials for the replacement of traditional brittle graphite bipolar-plates. For this purpose, interfacial contact resistances were measured and electrochemical corrosion tests were conducted. The results showed that although both TiN and CrN coatings decreased the interfacial contact resistances to less than $10m{\Omega}{\cdot}cm^2$, they did not significantly improve the corrosion resistance in simulated polymer electrolyte membrane fuel cell environments. A CrN coating on 316L stainless steel showed better corrosion resistance than a TiN coating did, indicating the possibility of using modified CrN coated metallic bipolar plates to replace graphite bipolar plates.

Numerical Simulation of the Elastic Moduli of Cement Paste As a Three Dimensional Unit Cell

  • Park, Ki-Bong
    • Architectural research
    • /
    • v.12 no.2
    • /
    • pp.93-98
    • /
    • 2010
  • This paper describes a numerical method for estimating the elastic moduli of cement paste. The cement paste is modeled as a unit cell which consists of three components: the unhydrated cement grain, the gel, and the capillary pore. In the unit cell, the volume fractions of the constituents are quantified using a single kinetic function calculating the degree of hydration. The elastic moduli of cement paste are calculated from the total displacements of constituents when a uniform pressure is applied to the gel contact area. The cement paste is assumed to be a homogenous isotropic matrix. Numerical simulations were conducted through the finite element analysis of the three-dimensional periodic unit cell. The model predictions are compared with experimental results. The predicted trends are in good agreement with experimental observations. This approach and some of the results might also be relevant for other technical applications.

Analytical and experimental postbuckling of conditioned cables

  • Rivierre, L.;Polit, O.;Billoet, J.L.
    • Structural Engineering and Mechanics
    • /
    • v.12 no.6
    • /
    • pp.595-614
    • /
    • 2001
  • This paper studies the behaviour of a homogeneous cable in a horizontal rigid duct and loaded by an axial compressive force. This behaviour is characterized by spatial buckling modes, named sinusoidal and helical, due to friction and total or partial cable locking. The evaluation of critical buckling loads involved by drilling technology has been studied by many authors. This work presents a new formulation, taking the friction effects into account, for the transmission of the axial load during the postbuckling process. New analytical expressions of pitches in both buckling cases are also given. A life-sized bench is presented, which permits to study the laying of optical fiber cables by squeezing them into an underground duct. Finally, analytical solutions are compared with experimental tests and finite element simulations.