DOI QR코드

DOI QR Code

Measures of micromotion in cementless femoral stems-review of current methodologies

  • Solitro, Giovanni F (Department of Orthopaedic Surgery, University of Illinois at Chicago) ;
  • Whitlock, Keith (College of Medicine, University of Illinois at Chicago) ;
  • Amirouche, Farid (Department of Orthopaedic Surgery, University of Illinois at Chicago) ;
  • Santis, Catherine (Department of Mechanical Engineering, University of Illinois at Chicago)
  • Received : 2016.03.29
  • Accepted : 2016.06.17
  • Published : 2016.06.25

Abstract

Stability and loosening of implanted femoral stems in Total Hip Replacement have been well established as barriers to the primary concerns of osseointegration and long term implant survival. In-vitro experiments and finite element modeling have for years been used as a primary tool to assess the bone stem interface with variable methodologies leading to a wide range of micromotion, interference fit and stress shielding values in the literature. The current study aims to provide a comprehensive review of currently utilized methodologies for in-vitro mechanical testing as well as finite element modeling of both micromotion and interference of implanted femoral stems. A total of 12 studies detailed in 33 articles were selected for inclusion. Experimental values of micromotion ranged from 12 to $182{\mu}m$ while finite element analysis reported a wider range from 2.74 to $1,277{\mu}m$. Only two studies were found that modeled bone/implant contact with consideration for interference fit. In studies evaluating stem micromotion in THA, the reference surface at the bone/stem interface should be well defined. Additionally, the amount of penetration considered should be disclosed and associated with bone density and roughness.

Keywords

Acknowledgement

Supported by : Aurelio Caccomo Family Foundation

References

  1. Aamodt, A, Lund-Larsen, J., Eine, J., Andersen, E., Benum, P. and Husby, O.S. (2001), "Changes in proximal femoral strain after insertion of uncemented standard and customised femoral stems, An experimental study in human femora", J. Bone Joint Surg. Br., 83(6), 921-929. https://doi.org/10.1302/0301-620X.83B6.9726
  2. Abdul-Kadir, M.R., Hansen, U., Klabunde, R., Lucas, D. and Amis, A. (2008), "Finite element modelling of primary hip stem stability: the effect of interference fit", J. Biomech. 41(3), 587-94. https://doi.org/10.1016/j.jbiomech.2007.10.009
  3. Amstutz, H.C., Ma, S.M., Jinnah, R.H. and Mai, L. (1982), "Revision of aseptic loose total hip arthroplasties", Clin. Orthop. Relat. Res., 170, 21-33.
  4. Baharuddin, M.Y., Salleh, S.H., Zulkifly, A.H., Lee, M.H., Noor, A.M., A Harris, A.R., Majid, N.A. and Abd Kader, A.S. (2014), "Design process of cementless femoral stem using a nonlinear three dimensional finite element analysis", BMC Musculoskelet. Disord., 15(1), 1-17. https://doi.org/10.1186/1471-2474-15-1
  5. Baleani, M., Cristofolini, L. and Toni, A. (2000), "Initial stability of a new hybrid fixation hip stem: Experimental measurement of implant-bone micromotion under torsional load in comparison with cemented and cementless stems", J. Biomed. Mater. Res., 50(4), 605-615. https://doi.org/10.1002/(SICI)1097-4636(20000615)50:4<605::AID-JBM17>3.0.CO;2-P
  6. Berend, K.R. and Lombardi, A.V. (2010), "Intraoperative femur fracture is associated with stem and instrument design in primary total hip arthroplasty", Clin. Orthop. Relat. Res., 468(9), 2377-2381. https://doi.org/10.1007/s11999-010-1314-8
  7. Bergmann, G., Deuretzbacher, G., Heller, M., Graichen, F., Rohlmann, A., Strauss, J. and Duda, G. (2001), "Hip contact forces and gait patterns from routine activities", J. Biomech., 34(7), 859-871. https://doi.org/10.1016/S0021-9290(01)00040-9
  8. Bernakiewicz, M. and Viceconti, M. (2002), "The role of parameter identification in finite element contact analyses with reference to orthopaedic biomechanics applications", J. Biomech., 35(1), 61-67. https://doi.org/10.1016/S0021-9290(01)00163-4
  9. Biedermann, R., Tonin, A., Krismer, M., Rachbauer, F., Eibl, G. and Stockl, B. (2005), "Reducing the risk of dislocation after total hip arthroplasty", Bone Joint J., 87(6), 762-769.
  10. Bieger, R., Ignatius, A., Decking, R., Claes, L., Reichel, H., Durselen, L., (2012), "Primary stability and strain distribution of cementless hip stems as a function of implant design", Clin. Biomech., 27(2), 158-164. https://doi.org/10.1016/j.clinbiomech.2011.08.004
  11. Bieger, R., Ignatius, A., Reichel, H. and Durselen, L. (2013), "Biomechanics of a Short Stem: In Vitro Primary Stability and Stress Shielding of a Conservative Cementless Hip Stem", J. Orthop. Res., 31(8), 717-25.
  12. Borsari, V., Fini, M., Giavaresi, G., Tschon, M., Chiesa, R., Chiusoli, L., Salito, A., Rimondini, L. and Giardino, R. (2009), "Comparative in vivo evaluation of porous and dense duplex titanium and hydroxyapatite coating with high roughnesses in different implantation environments", J. Biomed. Mater. Res. - Part A, 89(2), 550-560.
  13. Buhler, D.W., Berlemann, U., Lippuner, K., Jaeger, P. and Nolte, L.P. (1997), "Three-dimensional primary stability of cementless femoral stems", Clin. Biomech., 12(7), 75-86. https://doi.org/10.1016/S0268-0033(96)00059-9
  14. Callaghan, J.J., Fulghum, C.S., Glisson, R.R. and Stranne, S.K. (1992), "The effect of femoral stem geometry on interface motion in uncemented porous-coated total hip prostheses. Comparison of straightstem and curved-stem designs", J. Bone Joint Surg. Am., 74(6), 839-48. https://doi.org/10.2106/00004623-199274060-00005
  15. Camine, V.M., Rudiger, H., Pioletti, D.P., Terrier, A., (2015), "Distribution of gap and micromotion during compressive loading around a cementless femoral stem", Comput. Methods Biomech. Biomed. Engin., 18(sup1), 1896-1897. https://doi.org/10.1080/10255842.2015.1069626
  16. Cattaneo, P.M., Dalstra, M., Frich, L.H., (2001), "A three-dimensional finite element model from computed tomography data: a semi-automated method", Proc. Inst. Mech. Eng. H., 215(2), 203-13.
  17. Chappard, C., Basillais, A., Benhamou, L., Bonassie, A., Brunet-Imbault, B., Bonnet, N. and Peyrin, F. (2006), "Comparison of synchrotron radiation and conventional x-ray microcomputed tomography for assessing trabecular bone microarchitecture of human femoral heads", Med. Phys., 33(9), 3568-77. https://doi.org/10.1118/1.2256069
  18. Charnley, J. (1970), "Total hip replacement by low-friction arthroplasty", Clin. Orthop. Relat. Res., 72, 7-21.
  19. Cristofolini, L., Varini, E., Pelgreffi, I., Cappello, A. and Toni, A. (2006), "Device to measure intraoperatively the primary stability of cementless hip stems", Med. Eng. Phys., 28(5), 475-482. https://doi.org/10.1016/j.medengphy.2005.07.015
  20. Darwiche, H., Barsoum, W.K., Klika, A., Krebs, V.E. and Molloy, R. (2010), "Retrospective analysis of infection rate after early reoperation in total hip arthroplasty", Clin. Orthop. Relat. Res., 468(9), 2392-2396. https://doi.org/10.1007/s11999-010-1325-5
  21. Davy, D.T., Kotzar, G.M., Brown, R.H., Heiple, K.G., Goldberg, V.M., Berilla, J. and Burstein, A.H. (1988), "Telemetric force measurements across the hip after total arthroplasty", J. Bone Joint Surg. Am., 70(1), 45-50. https://doi.org/10.2106/00004623-198870010-00008
  22. Decking, R., Puhl, W., Simon, U. and Claes, L.E. (2006), "Changes in strain distribution of loaded proximal femora caused by different types of cementless femoral stems", Clin. Biomech., 21(5), 495-501. https://doi.org/10.1016/j.clinbiomech.2005.12.011
  23. Dopico-Gonzalez, C., New, A.M. and Browne, M. (2010), "Probabilistic finite element analysis of the uncemented hip replacement--effect of femur characteristics and implant design geometry", J. Biomech., 43(3), 512-20. https://doi.org/10.1016/j.jbiomech.2009.09.039
  24. Dudda, M., Gueleryuez, A., Gautier, E., Busato, A. and Roeder, C. (2010), "Risk factors for early dislocation after total hip arthroplasty: a matched case-control study", J. Orthop. Surg., 18(2), 179-183. https://doi.org/10.1177/230949901001800209
  25. Dumbleton, J.H., Manley, M.T. and Edidin, A.A. (2002), "A literature review of the association between wear rate and osteolysis in total hip arthroplasty", J. Arthroplasty, 17(5), 649-661. https://doi.org/10.1054/arth.2002.33664
  26. Engh, C.A., O'Connor, D., Jasty, M., McGovern, T.F., Bobyn, J.D., Harris, W.H., (1992), "Quantification of implant micromotion, strain shielding, and bone resorption with porous-coated anatomic medullary locking femoral prostheses", Clin. Orthop. Relat. Res., 285, 13-29.
  27. Enoksen, C.H., Gjerdet, N.R., Klaksvik, J., Arthursson, A.J., Schnell-Husby, O. and Wik, T.S. (2014), "Initial stability of an uncemented femoral stem with modular necks. An experimental study in human cadaver femurs", Clin. Biomech., 29(3), 330-335. https://doi.org/10.1016/j.clinbiomech.2013.12.011
  28. Eskelinen, A., Remes, V., Helenius, I., Pulkkinen, P., Nevalainen, J. and Paavolainen, P. (2006), "Uncemented total hip arthroplasty for primary osteoarthritis in young patients: a mid-to long-term follow-up study from the Finnish Arthroplasty Register", Acta Orthop., 77(1), 57-70. https://doi.org/10.1080/17453670610045704
  29. Fazzalari, N.L., Darracott, J. and Vernon-Roberts, B. (1985), "Histomorphometric changes in the trabecular structure of a selected stress region in the femur in patients with osteoarthritis and fracture of the femoral neck", Bone, 6(3), 125-133. https://doi.org/10.1016/8756-3282(85)90044-4
  30. Fottner, A., Peter, C.V., Schmidutz, F., Wanke-Jellinek, L., Schroder, C., Mazoochian, F., Jansson, V., Schroder, C., Mazoochian, F., Jansson, V., Schroder, C., Mazoochian, F. and Jansson, V. (2011), "Biomechanical evaluation of different offset versions of a cementless hip prosthesis by 3-dimensional measurement of micromotions", Clin. Biomech., 26(8), 830-835. https://doi.org/10.1016/j.clinbiomech.2011.04.001
  31. Fujishiro, T., Nishikawa, T., Niikura, T., Takikawa, S., Nishiyama, T., Mizuno, K., Yoshiya, S. and Kurosaka, M. (2009), "Impaction bone grafting with hydroxyapatite", Acta Orthop., 76, 550-554.
  32. Gallo, J., Havranek, V. and Zapletalova, J. (2010), "Risk factors for accelerated polyethylene wear and osteolysis in ABG I total hip arthroplasty", Int. Orthop., 34(1), 19-26. https://doi.org/10.1007/s00264-009-0731-3
  33. Gortchacow, M., Wettstein, M., Pioletti, D.P. and Terrier, A. (2011), "A new technique to measure micromotion distribution around a cementless femoral stem", J. Biomech., 44(3), 557-560. https://doi.org/10.1016/j.jbiomech.2010.09.023
  34. Gortchacow, M., Wettstein, M., Pioletti, D.P., Muller-Gerbl, M. and Terrier, A. (2012), "Simultaneous and multisite measure of micromotion, subsidence and gap to evaluate femoral stem stability", J. Biomech., 45(7), 1232-1238. https://doi.org/10.1016/j.jbiomech.2012.01.040
  35. Hashemi, A., Shirazi-Adl, A. and Dammak, M. (1996), "Bidirectional friction study of cancellous bone-porous coated metal interface", J. Biomed. Mater. Res., 33(4), 257-267. https://doi.org/10.1002/(SICI)1097-4636(199624)33:4<257::AID-JBM5>3.0.CO;2-O
  36. Heller, M.O., Bergmann, G., Kassi, J.P., Claes, L., Haas, N.P. and Duda, G.N. (2005), "Determination of muscle loading at the hip joint for use in pre-clinical testing", J. Biomech., 38(5), 1155-1163. https://doi.org/10.1016/j.jbiomech.2004.05.022
  37. Hermida, J.C., Bergula, A., Dimaano, F., Hawkins, M., Colwell, C.W. and D D'Lima, D. (2010), "An in vivo evaluation of bone response to three implant surfaces using a rabbit intramedullary rod model", J. Orthop. Surg. Res., 5(1), 1-8. https://doi.org/10.1186/1749-799X-5-1
  38. Imade, S., Mori, R., Uchio, Y. and Furuya, S. (2009), "Effect of implant surface roughness on bone fixation: The differences between bone and metal pegs", J. Orthop. Sci., 14(5), 652-657. https://doi.org/10.1007/s00776-009-1369-0
  39. Iorio, R., Robb, W.J., Healy, W.L., Berry, D.J., Hozack, W.J., Kyle, R.F., Lewallen, D.G., Trousdale, R.T., Jiranek, W.A., Stamos, V.P. and Parsley, B.S. (2008), "Orthopaedic surgeon workforce and volume assessment for total hip and knee replacement in the United States: preparing for an epidemic", J. Bone Joint Surg. Am., 90(7), 1598-605. https://doi.org/10.2106/JBJS.H.00067
  40. Jacobs, J.J., Roebuck, K.A., Archibeck, M., Hallab, N.J. and Glant, T.T. (2001), "Osteolysis: basic science", Clin. Orthop. Relat. Res., 393, 71-7. https://doi.org/10.1097/00003086-200112000-00008
  41. Jasty, M., Bragdon, C., Burke, D., O'Connor, D., Lowenstein, J. and Harris, W.H. (1997), "In vivo skeletal responses to porous-surfaced implants subjected to small induced motions", J. Bone Joint Surg. Am., 79(5), 707-14. https://doi.org/10.2106/00004623-199705000-00010
  42. Jeffers, J.R., Browne, M., Lennon, A.B., Prendergast, P.J. and Taylor, M. (2007), "Cement mantle fatigue failure in total hip replacement: experimental and computational testing", J. Biomech., 40(7), 1525-1533. https://doi.org/10.1016/j.jbiomech.2006.07.029
  43. Jolles, B.M., Zangger, P. and Leyvraz, P.F. (2002), "Factors predisposing to dislocation after primary total hip arthroplasty: a multivariate analysis", J. Arthroplasty, 17(3), 282-288. https://doi.org/10.1054/arth.2002.30286
  44. Kaneuji, T., Ariyoshi, W., Okinaga, T., Toshinaga, A., Takahashi, T. and Nishihara, T. (2011), "Mechanisms involved in regulation of osteoclastic differentiation by mechanical stress-loaded osteoblasts", Biochem. Biophys. Res. Comm., 408(1), 103-109. https://doi.org/10.1016/j.bbrc.2011.03.128
  45. Kanno, T., Takahashi, T., Tsujisawa, T., Ariyoshi, W. and Nishihara, T. (2007), "Mechanical stress-mediated Runx2 activation is dependent on Ras/ERK1/2 MAPK signaling in osteoblasts", J. Cell. Biochem., 101(5), 1266-1277. https://doi.org/10.1002/jcb.21249
  46. Kassi, J.P., Heller, M.O., Stoeckle, U., Perka, C. and Duda, G.N. (2005), "Stair climbing is more critical than walking in pre-clinical assessment of primary stability in cementless THA in vitro", J. Biomech., 38(5), 1143-1154. https://doi.org/10.1016/j.jbiomech.2004.05.023
  47. Khatod, M., Cafri, G., Namba, R.S., Inacio, M.C. and Paxton, E.W. (2014), "Risk factors for total hip arthroplasty aseptic revision", J. Arthroplasty, 29(7), 1412-1417. https://doi.org/10.1016/j.arth.2014.01.023
  48. Kido, S., Kuriwaka-Kido, R., Imamura, T., Ito, Y., Inoue, D. and Matsumoto, T. (2009), "Mechanical stress induces Interleukin-11 expression to stimulate osteoblast differentiation", Bone, 45(6), 1125-1132. https://doi.org/10.1016/j.bone.2009.07.087
  49. Kienapfel, H., Sprey, C., Wilke, A. and Griss, P. (1999), "Implant fixation by bone ingrowth", J. Arthroplasty, 14(3), 355-368. https://doi.org/10.1016/S0883-5403(99)90063-3
  50. Kim, Y.H., Oh, S.H. and Kim, J.S. (2003), "Primary total hip arthroplasty with a second-generation cementless total hip prosthesis in patients younger than fifty years of age", J.Bone Joint Surg. Am., 85(1), 109-114.
  51. Kohnke, P. (2013), ANSYS Mechanical APDL theory reference.
  52. Kotzar, G.M., Davy, D.T., Goldberg, V.M., Heiple, K.G., Berilla, J., Brown, R.H., Burstein, A.H., (1991), "Telemeterized in vivo hip joint force data: a report on two patients after total hip surgery", J. Orthop. Res., 9(5), 621-33. https://doi.org/10.1002/jor.1100090502
  53. Kremers, H.M., Howard, J.L., Loechler, Y., Schleck, C.D., Harmsen, W.S., Berry, D.J., Cabanela, M.E., Hanssen, A.D., Pagnano, M.W., Trousdale, R.T. and Lewallen, D.G. (2012), "Comparative long-term survivorship of uncemented acetabular components in revision total hip arthroplasty", J. Bone Joint Surg. Am., 94(12),1-8.
  54. Kurtz, S., Ong, K., Lau, E., Mowat, F. and Halpern, M. (2007), "Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030", J. Bone Joint Surg. Am., 89(4), 780-785.
  55. Langton, D.J., Jameson, S.S., Joyce, T.J., Hallab, N.J., Natu, S. and Nargol, V.F. (2010), "Early failure of metal-on-metal bearings in hip resurfacing and large-diameter total hip replacement: A consequence of excess wear", J. Bone Joint Surg. Br., 92(1), 38-46.
  56. Lannocca, M., Varini, E., Cappello, A., Cristofolini, L. and Bialoblocka, E. (2007), "Intra-operative evaluation of cementless hip implant stability: a prototype device based on vibration analysis", Med. Eng. Phys., 29(8), 886-94. https://doi.org/10.1016/j.medengphy.2006.09.011
  57. Learmonth, I.D., Young, C. and Rorabeck, C. (2007), "The operation of the century: total hip replacement", Lancet, 370(9597), 1508-1519. https://doi.org/10.1016/S0140-6736(07)60457-7
  58. Lim J, Jeong J, Ha S, (2003),"Design of Composite Hip Prostheses Considering the Long-Term Behavior of the Femur", JSME Int J. Ser C. Mech Syst. Mach Elem Manuf, 46(3), 991-999. https://doi.org/10.1299/jsmec.46.991
  59. Lindahl, H. (2007), "Epidemiology of periprosthetic femur fracture around a total hip arthroplasty", Injury, 38(6), 651-654. https://doi.org/10.1016/j.injury.2007.02.048
  60. Lord, G.A., Hardy, J.R. and Kummer, F.J. (1979), "An uncemented total hip replacement: experimental study and review of 300 madreporique arthroplasties", Clin. Orthop. Relat. Res., 141, 2-16.
  61. Mandell, J.A., Carter, D.R., Goodman, S.B., Schurman, D.J. and Beaupre, G.S. (2004), "A conical-collared intramedullary stem can improve stress transfer and limit micromotion", Clin. Biomech., 19(7), 695-703. https://doi.org/10.1016/j.clinbiomech.2004.04.004
  62. Meek, R.M.D., Norwood, T., Smith, R., Brenkel, I.J. and Howie, C.R. (2011), "The risk of peri-prosthetic fracture after primary and revision total hip and knee replacement", J. Bone Joint Surg. Br., 93(1), 96-101.
  63. Meneghini, R.M., Hallab, N.J., Berger, R.A., Jacobs, J.J., Paprosky, W.G. and Rosenberg, A.G. (2006), "Stem diameter and rotational stability in revision total hip arthroplasty: a biomechanical analysis", J. Orthop. Surg. Res., 1(1), 1-7. https://doi.org/10.1186/1749-799X-1-1
  64. Mesfar, W., Shirazi-Adl, A. and Dammak, M. (2003), "Modeling of biomedical interfaces with nonlinear friction properties", Bio-med. Mater. Eng., 13(1), 91-101.
  65. Monti, L., Cristofolini, L., Toni, A. and Ceroni, R.G. (2001), "In vitro testing of the primary stability of the VerSys enhanced taper stem: a comparative study in intact and intraoperatively cracked femora", Proc. Inst. Mech. Eng. Part H J. Eng. Med., 215(1), 75-83. https://doi.org/10.1243/0954411011533553
  66. Nadorf, J., Thomsen, M., Gantz, S., Sonntag, R. and Kretzer, J.P. (2014), "Fixation of the shorter cementless GTSTM stem: Biomechanical comparison between a conventional and an innovative implant design", Arch. Orthop. Trauma Surg., 134(5), 719-726. https://doi.org/10.1007/s00402-014-1946-3
  67. Ostbyhaug, P.O., Klaksvik, J., Romundstad, P. and Aamodt, A. (2013), "Shortening of an anatomical stem, how short is short enough? An in vitro study of load transfer and primary stability", Proc. Inst. Mech. Eng. Part H J. Eng. Med., 227(5), 481-489.
  68. Ostbyhaug, P.O., Klaksvik, J., Romundstad, P. and Aamodt, A. (2010), "Primary stability of custom and anatomical uncemented femoral stems: a method for three-dimensional in vitro measurement of implant stability", Clin. Biomech., 25(4), 318-24. https://doi.org/10.1016/j.clinbiomech.2009.12.012
  69. Pancanti, A., Bernakiewicz, M. and Viceconti, M. (2003), "The primary stability of a cementless stem varies between subjects as much as between activities", J. Biomech., 36(6), 777-785. https://doi.org/10.1016/S0021-9290(03)00011-3
  70. Park, Y., Albert, C., Yoon, Y.S., Fernlund, G., Frei, H. and Oxland, T.R. (2010), "The effect of abductor muscle and anterior-posterior hip contact load simulation on the in-vitro primary stability of a cementless hip stem", J. Orthop. Surg. Res., 5(1), 1-14. https://doi.org/10.1186/1749-799X-5-1
  71. Park, Y., Choi, D., Hwang, D.S. and Yoon, Y.S. (2009), "Statistical analysis of interfacial gap in a cementless stem FE model", J. Biomech. Eng., 131(2), 1-8.
  72. Park, Y., Shin, H., Choi, D., Albert, C. and Yoon, Y.S. (2008), "Primary stability of cementless stem in THA improved with reduced interfacial gaps", J. Biomech. Eng., 130(2), 1-7.
  73. Parvizi, J., Suh, D.H., Jafari, S.M., Mullan, A. and Purtill, J.J. (2011), "Aseptic loosening of total hip arthroplasty: infection always should be ruled out", Clin. Orthop. Relat. Res., 469(5), 1401-5. https://doi.org/10.1007/s11999-011-1822-1
  74. Pettersen, S.H., Wik, T.S. and Skallerud, B. (2009), "Subject specific finite element analysis of implant stability for a cementless femoral stem", Clin. Biomech., 24(6), 480-7. https://doi.org/10.1016/j.clinbiomech.2009.03.009
  75. Pilliar, R.M., Lee, J.M. and Maniatopoulos, C.D.D.S. (1986), "Observations on the effect of movement on bone ingrowth into porous-surfaced implants", Clin. Orthop. Relat. Res., 208, 108-113.
  76. Race, A., Heffernan, C.D. and Sharkey, P.F. (2011), "The addition of a hydroxyapatite coating changes the immediate postoperative stability of a Plasma-sprayed femoral stem", J. Arthroplasty, 26(2), 289-295. https://doi.org/10.1016/j.arth.2010.02.004
  77. Reggiani, B., Cristofolini, L., Taddei, F. and Viceconti, M. (2008), "Sensitivity of the primary stability of a cementless hip stem to its position and orientation", Artif. Organ., 32(7), 555-560. https://doi.org/10.1111/j.1525-1594.2008.00577.x
  78. Reggiani, B., Cristofolini, L., Varini, E. and Viceconti, M. (2007), "Predicting the subject-specific primary stability of cementless implants during pre-operative planning: Preliminary validation of subject-specific finite-element models", J. Biomech., 40(11), 2552-2558. https://doi.org/10.1016/j.jbiomech.2006.10.042
  79. Reimeringer, M., Nuno, N., (2014), "Effect of femoral mechanical properties on primary stability of cementless total hip arthroplasty: a finite element analysis", Adv. Biomech. Appl., 1(3), 187-210. https://doi.org/10.12989/aba.2014.1.3.187
  80. Reimeringer, M., Nuno, N., Desmarais-Trepanier, C., Lavigne, M. and Vendittoli, P.A. (2013), "The influence of uncemented femoral stem length and design on its primary stability: a finite element analysis", Comput. Methods Biomech. Biomed. Engin., 16(11), 1221-31. https://doi.org/10.1080/10255842.2012.662677
  81. Riddle, R.C. and Donahue, H.J. (2009), "From streaming-potentials to shear stress: 25 years of bone cell mechanotransduction", J. Orthop. Res., 27(2), 143-9. https://doi.org/10.1002/jor.20723
  82. Rubinacci A., Tresoldi, D., Scalco, E., Villa, I., Adorni, F., Moro, G.L., Fraschini, G.F. and Rizzo, G. (2012), "Comparative high-resolution pQCT analysis of femoral neck indicates different bone mass distribution in osteoporosis and osteoarthritis", Osteoporos. Int., 23(7), 1967-1975. https://doi.org/10.1007/s00198-011-1795-7
  83. Sakai, R., Sato, Y., Itoman, M. and Mabuchi, K. (2010), "Initial fixation of a finite element model of an AIHip cementless stem evaluated by micromotion and stress", J. Orthop. Sci., 15(1), 132-139. https://doi.org/10.1007/s00776-009-1422-z
  84. Scholl, E., Eggli, S. and Ganz, R. (2000), "Osteolysis in cemented titanium alloy hip prosthesis", J. Arthroplasty, 15(5), 570-5. https://doi.org/10.1054/arth.2000.6618
  85. Senthi, S., Munro, J.T. and Pitto, R.P. (2011), "Infection in total hip replacement: Meta-analysis", Int. Orthop., 35(2), 253-260. https://doi.org/10.1007/s00264-010-1144-z
  86. Shultz, T.R., Blaha, J.D., Gruen, T.A. and Norman, T.L. (2006), "Cortical bone viscoelasticity and fixation strength of press-fit femoral stems: a finite element model", J. Biomech. Eng., 128(1), 7-12. https://doi.org/10.1115/1.2133765
  87. Striker Corporation (2010), "Striker secure-fit plus max, Surgical Protocol", LSP47M.
  88. Tarala, M., Janssen, D., Telka, A., Waanders, D. and Verdonschot, N. (2011), "Experimental versus computational analysis of micromotions at the implant-bone interface", Proc. Inst. Mech. Eng., H., 225(1), 8-15. https://doi.org/10.1243/09544119JEIM825
  89. Unger, A.S., Lewis, R.J. and Gruen, T. (2005), "Evaluation of a porous tantalum uncemented acetabular cup in revision total hip arthroplasty: clinical and radiological results of 60 hips", J. Arthroplasty, 20(8), 1002-1009. https://doi.org/10.1016/j.arth.2005.01.023
  90. Van Der Ploeg, B., Tarala, M., Homminga, J., Janssen, D., Buma, P. and Verdonschot, N. (2012), "Toward a more realistic prediction of peri-prosthetic micromotions", J. Orthop. Res., 30(7), 1147-1154. https://doi.org/10.1002/jor.22041
  91. Van Rietbergen, B., Huiskes, R., Weinans, H., Sumner, D.R., Turner, T.M. and Galante, J.O. (1993), "The mechanism of bone remodeling and resorption around press-fitted THA stems", J. Biomech., 26(4-5), 369-382. https://doi.org/10.1016/0021-9290(93)90001-U
  92. Varini, E., Bialoblocka-Juszczyk, E., Lannocca, M., Cappello, A. and Cristofolini, L. (2010), "Assessment of implant stability of cementless hip prostheses through the frequency response function of the stem-bone system", Sensors Actuators A: Phys., 163(2), 526-532. https://doi.org/10.1016/j.sna.2010.08.029
  93. Viceconti, M., Brusi, G., Pancanti, A. and Cristofolini, L. (2006), "Primary stability of an anatomical cementless hip stem: a statistical analysis", J. Biomech., 39(7), 1169-79. https://doi.org/10.1016/j.jbiomech.2005.03.024
  94. Viceconti, M., Monti, L., Muccini, R., Bernakiewicz, M. and Toni, A. (2001), "Even a thin layer of soft tissue may compromise the primary stability of cementless hip stems", Clin. Biomech., 16(9), 765-775. https://doi.org/10.1016/S0268-0033(01)00052-3
  95. Viceconti, M., Muccini, R., Bernakiewicz, M., Baleani, M. and Cristofolini, L. (2000), "Large-sliding contact elements accurately predict levels of bone-implant micromotion relevant to osseointegration", J. Biomech., 33(12), 1611-1618. https://doi.org/10.1016/S0021-9290(00)00140-8
  96. Waanders, D., Janssen, D., Mann, K.A. and Verdonschot, N. (2011), "The behavior of the micro-mechanical cement-bone interface affects the cement failure in total hip replacement", J. Biomech., 44(2), 228-234. https://doi.org/10.1016/j.jbiomech.2010.10.020
  97. Wik, T.S., Enoksen, C., Klaksvik, J., Ostbyhaug, P.O., Foss, O., Ludvigsen, J. and Aamodt, A. (2011), "In vitro testing of the deformation pattern and initial stability of a cementless stem coupled to an experimental femoral head, with increased offset and altered femoral neck angles", Proc. Inst. Mech. Eng. H., 225, 797-808. https://doi.org/10.1177/0954411911403818
  98. Wriggers, P. (1995), "Finite element algorithms for contact problems", Arch. Comput. Method. Eng., 2(4), 1-49. https://doi.org/10.1007/BF02736195
  99. Zimmer, Inc. (2010), "Trabecular Metal$^{TM}$ Primary Hip Prosthesis Surgical Technique", Warsaw I.

Cited by

  1. Biomechanical Robustness of a Contemporary Cementless Stem to Surgical Variation in Stem Size and Position vol.140, pp.9, 2016, https://doi.org/10.1115/1.4039824