Browse > Article
http://dx.doi.org/10.14773/cst.2013.12.4.171

Corrosion characteristics and interfacial contact resistances of TiN and CrN coatings deposited by PVD on 316L stainless steel for polymer electrolyte membrane fuel cell bipolar plates  

Lee, Jae-Bong (School of Advanced Materials Engineering, Kookmin University)
Oh, In Hwan (School of Advanced Materials Engineering, Kookmin University)
Publication Information
Corrosion Science and Technology / v.12, no.4, 2013 , pp. 171-178 More about this Journal
Abstract
In a polymer membrane fuel cell stack, the bipolar plate is a key element because it accounts for over 50% of total costs of the stack. In order to lower the cost of bipolar plates, 316L stainless steels coated with nitrides such as TiN and CrN by physical vapor deposition were investigated as alternative materials for the replacement of traditional brittle graphite bipolar-plates. For this purpose, interfacial contact resistances were measured and electrochemical corrosion tests were conducted. The results showed that although both TiN and CrN coatings decreased the interfacial contact resistances to less than $10m{\Omega}{\cdot}cm^2$, they did not significantly improve the corrosion resistance in simulated polymer electrolyte membrane fuel cell environments. A CrN coating on 316L stainless steel showed better corrosion resistance than a TiN coating did, indicating the possibility of using modified CrN coated metallic bipolar plates to replace graphite bipolar plates.
Keywords
Fuel cell; Bipolar plate; Stainless steel; CrN; TiN; PEMFC;
Citations & Related Records
연도 인용수 순위
  • Reference
1 E. A. Cho, U. S. Jeon, S. A. Hong, I. H. Oh, S. G. Kang, J. Power Sources, 142, 177 (2005).   DOI   ScienceOn
2 Y. Hung, K. M. El-Khatib, H. Tawfik, J. Power Sources, 163, 509 (2006).   DOI   ScienceOn
3 J. S. Cooper, J. Power Sources, 129, 152 (2004).   DOI   ScienceOn
4 A. Hermann, T. Chaudhuri, P. Spagnol, Int. J. Hydrogen Energy, 30, 1297 (2005).   DOI   ScienceOn
5 R. A. Antunes, M. C. L. Oliveira, G. Ett, V. Ett, Int. J. Hydrogen Energy, 35, 3632 (2010).   DOI   ScienceOn
6 A. Kraytsberg, M. Auinat, Y. Ein-Eli, J. Power Sources, 164, 697 (2007).   DOI   ScienceOn
7 M. Li, S. Luo, C. Zeng, J. Shen, H. Lin, C. Cao, Corros. Sci., 46, 1369 (2007).
8 Y. Wang, D. O. Northwood, J. Power Sources, 165, 293 (2007).   DOI   ScienceOn
9 Y. Wang, D. O. Northwood, J. Power Sources, 191, 483 (2009).   DOI   ScienceOn
10 B. Elsener, A. Rota, H. Bohni, Mater. Sci. Forum, 44-45, 29 (1989).   DOI
11 B. Matthes, E. Broszeit, J. Aromaa, H. Ronkainen, S. P. Hannula, A. Leyland, A. Matthews, Surf. Coat. Technol., 49, 489 (1991).   DOI   ScienceOn
12 I. H. Oh and Jae-Bong Lee, Corros. Sci. Tech., 9, 129 (2010).
13 H. Tawfik, Y. Hung, D. Mahajan, J. Power Sources, 163, 755 (2007).   DOI   ScienceOn