Browse > Article
http://dx.doi.org/10.12989/bme.2016.3.2.085

Measures of micromotion in cementless femoral stems-review of current methodologies  

Solitro, Giovanni F (Department of Orthopaedic Surgery, University of Illinois at Chicago)
Whitlock, Keith (College of Medicine, University of Illinois at Chicago)
Amirouche, Farid (Department of Orthopaedic Surgery, University of Illinois at Chicago)
Santis, Catherine (Department of Mechanical Engineering, University of Illinois at Chicago)
Publication Information
Biomaterials and Biomechanics in Bioengineering / v.3, no.2, 2016 , pp. 85-104 More about this Journal
Abstract
Stability and loosening of implanted femoral stems in Total Hip Replacement have been well established as barriers to the primary concerns of osseointegration and long term implant survival. In-vitro experiments and finite element modeling have for years been used as a primary tool to assess the bone stem interface with variable methodologies leading to a wide range of micromotion, interference fit and stress shielding values in the literature. The current study aims to provide a comprehensive review of currently utilized methodologies for in-vitro mechanical testing as well as finite element modeling of both micromotion and interference of implanted femoral stems. A total of 12 studies detailed in 33 articles were selected for inclusion. Experimental values of micromotion ranged from 12 to $182{\mu}m$ while finite element analysis reported a wider range from 2.74 to $1,277{\mu}m$. Only two studies were found that modeled bone/implant contact with consideration for interference fit. In studies evaluating stem micromotion in THA, the reference surface at the bone/stem interface should be well defined. Additionally, the amount of penetration considered should be disclosed and associated with bone density and roughness.
Keywords
femoral stem; micromotion; cadaveric testing; finite element modeling; interference fit;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Nadorf, J., Thomsen, M., Gantz, S., Sonntag, R. and Kretzer, J.P. (2014), "Fixation of the shorter cementless GTSTM stem: Biomechanical comparison between a conventional and an innovative implant design", Arch. Orthop. Trauma Surg., 134(5), 719-726.   DOI
2 Ostbyhaug, P.O., Klaksvik, J., Romundstad, P. and Aamodt, A. (2013), "Shortening of an anatomical stem, how short is short enough? An in vitro study of load transfer and primary stability", Proc. Inst. Mech. Eng. Part H J. Eng. Med., 227(5), 481-489.
3 Jeffers, J.R., Browne, M., Lennon, A.B., Prendergast, P.J. and Taylor, M. (2007), "Cement mantle fatigue failure in total hip replacement: experimental and computational testing", J. Biomech., 40(7), 1525-1533.   DOI
4 Jolles, B.M., Zangger, P. and Leyvraz, P.F. (2002), "Factors predisposing to dislocation after primary total hip arthroplasty: a multivariate analysis", J. Arthroplasty, 17(3), 282-288.   DOI
5 Kaneuji, T., Ariyoshi, W., Okinaga, T., Toshinaga, A., Takahashi, T. and Nishihara, T. (2011), "Mechanisms involved in regulation of osteoclastic differentiation by mechanical stress-loaded osteoblasts", Biochem. Biophys. Res. Comm., 408(1), 103-109.   DOI
6 Kanno, T., Takahashi, T., Tsujisawa, T., Ariyoshi, W. and Nishihara, T. (2007), "Mechanical stress-mediated Runx2 activation is dependent on Ras/ERK1/2 MAPK signaling in osteoblasts", J. Cell. Biochem., 101(5), 1266-1277.   DOI
7 Kassi, J.P., Heller, M.O., Stoeckle, U., Perka, C. and Duda, G.N. (2005), "Stair climbing is more critical than walking in pre-clinical assessment of primary stability in cementless THA in vitro", J. Biomech., 38(5), 1143-1154.   DOI
8 Fazzalari, N.L., Darracott, J. and Vernon-Roberts, B. (1985), "Histomorphometric changes in the trabecular structure of a selected stress region in the femur in patients with osteoarthritis and fracture of the femoral neck", Bone, 6(3), 125-133.   DOI
9 Fottner, A., Peter, C.V., Schmidutz, F., Wanke-Jellinek, L., Schroder, C., Mazoochian, F., Jansson, V., Schroder, C., Mazoochian, F., Jansson, V., Schroder, C., Mazoochian, F. and Jansson, V. (2011), "Biomechanical evaluation of different offset versions of a cementless hip prosthesis by 3-dimensional measurement of micromotions", Clin. Biomech., 26(8), 830-835.   DOI
10 Fujishiro, T., Nishikawa, T., Niikura, T., Takikawa, S., Nishiyama, T., Mizuno, K., Yoshiya, S. and Kurosaka, M. (2009), "Impaction bone grafting with hydroxyapatite", Acta Orthop., 76, 550-554.
11 Gallo, J., Havranek, V. and Zapletalova, J. (2010), "Risk factors for accelerated polyethylene wear and osteolysis in ABG I total hip arthroplasty", Int. Orthop., 34(1), 19-26.   DOI
12 Gortchacow, M., Wettstein, M., Pioletti, D.P. and Terrier, A. (2011), "A new technique to measure micromotion distribution around a cementless femoral stem", J. Biomech., 44(3), 557-560.   DOI
13 Gortchacow, M., Wettstein, M., Pioletti, D.P., Muller-Gerbl, M. and Terrier, A. (2012), "Simultaneous and multisite measure of micromotion, subsidence and gap to evaluate femoral stem stability", J. Biomech., 45(7), 1232-1238.   DOI
14 Hashemi, A., Shirazi-Adl, A. and Dammak, M. (1996), "Bidirectional friction study of cancellous bone-porous coated metal interface", J. Biomed. Mater. Res., 33(4), 257-267.   DOI
15 Heller, M.O., Bergmann, G., Kassi, J.P., Claes, L., Haas, N.P. and Duda, G.N. (2005), "Determination of muscle loading at the hip joint for use in pre-clinical testing", J. Biomech., 38(5), 1155-1163.   DOI
16 Baleani, M., Cristofolini, L. and Toni, A. (2000), "Initial stability of a new hybrid fixation hip stem: Experimental measurement of implant-bone micromotion under torsional load in comparison with cemented and cementless stems", J. Biomed. Mater. Res., 50(4), 605-615.   DOI
17 Engh, C.A., O'Connor, D., Jasty, M., McGovern, T.F., Bobyn, J.D., Harris, W.H., (1992), "Quantification of implant micromotion, strain shielding, and bone resorption with porous-coated anatomic medullary locking femoral prostheses", Clin. Orthop. Relat. Res., 285, 13-29.
18 Amstutz, H.C., Ma, S.M., Jinnah, R.H. and Mai, L. (1982), "Revision of aseptic loose total hip arthroplasties", Clin. Orthop. Relat. Res., 170, 21-33.
19 Baharuddin, M.Y., Salleh, S.H., Zulkifly, A.H., Lee, M.H., Noor, A.M., A Harris, A.R., Majid, N.A. and Abd Kader, A.S. (2014), "Design process of cementless femoral stem using a nonlinear three dimensional finite element analysis", BMC Musculoskelet. Disord., 15(1), 1-17.   DOI
20 Berend, K.R. and Lombardi, A.V. (2010), "Intraoperative femur fracture is associated with stem and instrument design in primary total hip arthroplasty", Clin. Orthop. Relat. Res., 468(9), 2377-2381.   DOI
21 Bergmann, G., Deuretzbacher, G., Heller, M., Graichen, F., Rohlmann, A., Strauss, J. and Duda, G. (2001), "Hip contact forces and gait patterns from routine activities", J. Biomech., 34(7), 859-871.   DOI
22 Kim, Y.H., Oh, S.H. and Kim, J.S. (2003), "Primary total hip arthroplasty with a second-generation cementless total hip prosthesis in patients younger than fifty years of age", J.Bone Joint Surg. Am., 85(1), 109-114.
23 Khatod, M., Cafri, G., Namba, R.S., Inacio, M.C. and Paxton, E.W. (2014), "Risk factors for total hip arthroplasty aseptic revision", J. Arthroplasty, 29(7), 1412-1417.   DOI
24 Kido, S., Kuriwaka-Kido, R., Imamura, T., Ito, Y., Inoue, D. and Matsumoto, T. (2009), "Mechanical stress induces Interleukin-11 expression to stimulate osteoblast differentiation", Bone, 45(6), 1125-1132.   DOI
25 Kienapfel, H., Sprey, C., Wilke, A. and Griss, P. (1999), "Implant fixation by bone ingrowth", J. Arthroplasty, 14(3), 355-368.   DOI
26 Kohnke, P. (2013), ANSYS Mechanical APDL theory reference.
27 Kotzar, G.M., Davy, D.T., Goldberg, V.M., Heiple, K.G., Berilla, J., Brown, R.H., Burstein, A.H., (1991), "Telemeterized in vivo hip joint force data: a report on two patients after total hip surgery", J. Orthop. Res., 9(5), 621-33.   DOI
28 Kremers, H.M., Howard, J.L., Loechler, Y., Schleck, C.D., Harmsen, W.S., Berry, D.J., Cabanela, M.E., Hanssen, A.D., Pagnano, M.W., Trousdale, R.T. and Lewallen, D.G. (2012), "Comparative long-term survivorship of uncemented acetabular components in revision total hip arthroplasty", J. Bone Joint Surg. Am., 94(12),1-8.
29 Jacobs, J.J., Roebuck, K.A., Archibeck, M., Hallab, N.J. and Glant, T.T. (2001), "Osteolysis: basic science", Clin. Orthop. Relat. Res., 393, 71-7.   DOI
30 Jasty, M., Bragdon, C., Burke, D., O'Connor, D., Lowenstein, J. and Harris, W.H. (1997), "In vivo skeletal responses to porous-surfaced implants subjected to small induced motions", J. Bone Joint Surg. Am., 79(5), 707-14.   DOI
31 Enoksen, C.H., Gjerdet, N.R., Klaksvik, J., Arthursson, A.J., Schnell-Husby, O. and Wik, T.S. (2014), "Initial stability of an uncemented femoral stem with modular necks. An experimental study in human cadaver femurs", Clin. Biomech., 29(3), 330-335.   DOI
32 Hermida, J.C., Bergula, A., Dimaano, F., Hawkins, M., Colwell, C.W. and D D'Lima, D. (2010), "An in vivo evaluation of bone response to three implant surfaces using a rabbit intramedullary rod model", J. Orthop. Surg. Res., 5(1), 1-8.   DOI
33 Imade, S., Mori, R., Uchio, Y. and Furuya, S. (2009), "Effect of implant surface roughness on bone fixation: The differences between bone and metal pegs", J. Orthop. Sci., 14(5), 652-657.   DOI
34 Iorio, R., Robb, W.J., Healy, W.L., Berry, D.J., Hozack, W.J., Kyle, R.F., Lewallen, D.G., Trousdale, R.T., Jiranek, W.A., Stamos, V.P. and Parsley, B.S. (2008), "Orthopaedic surgeon workforce and volume assessment for total hip and knee replacement in the United States: preparing for an epidemic", J. Bone Joint Surg. Am., 90(7), 1598-605.   DOI
35 Eskelinen, A., Remes, V., Helenius, I., Pulkkinen, P., Nevalainen, J. and Paavolainen, P. (2006), "Uncemented total hip arthroplasty for primary osteoarthritis in young patients: a mid-to long-term follow-up study from the Finnish Arthroplasty Register", Acta Orthop., 77(1), 57-70.   DOI
36 Callaghan, J.J., Fulghum, C.S., Glisson, R.R. and Stranne, S.K. (1992), "The effect of femoral stem geometry on interface motion in uncemented porous-coated total hip prostheses. Comparison of straightstem and curved-stem designs", J. Bone Joint Surg. Am., 74(6), 839-48.   DOI
37 Camine, V.M., Rudiger, H., Pioletti, D.P., Terrier, A., (2015), "Distribution of gap and micromotion during compressive loading around a cementless femoral stem", Comput. Methods Biomech. Biomed. Engin., 18(sup1), 1896-1897.   DOI
38 Bieger, R., Ignatius, A., Decking, R., Claes, L., Reichel, H., Durselen, L., (2012), "Primary stability and strain distribution of cementless hip stems as a function of implant design", Clin. Biomech., 27(2), 158-164.   DOI
39 Bernakiewicz, M. and Viceconti, M. (2002), "The role of parameter identification in finite element contact analyses with reference to orthopaedic biomechanics applications", J. Biomech., 35(1), 61-67.   DOI
40 Biedermann, R., Tonin, A., Krismer, M., Rachbauer, F., Eibl, G. and Stockl, B. (2005), "Reducing the risk of dislocation after total hip arthroplasty", Bone Joint J., 87(6), 762-769.
41 Aamodt, A, Lund-Larsen, J., Eine, J., Andersen, E., Benum, P. and Husby, O.S. (2001), "Changes in proximal femoral strain after insertion of uncemented standard and customised femoral stems, An experimental study in human femora", J. Bone Joint Surg. Br., 83(6), 921-929.   DOI
42 Abdul-Kadir, M.R., Hansen, U., Klabunde, R., Lucas, D. and Amis, A. (2008), "Finite element modelling of primary hip stem stability: the effect of interference fit", J. Biomech. 41(3), 587-94.   DOI
43 Rubinacci A., Tresoldi, D., Scalco, E., Villa, I., Adorni, F., Moro, G.L., Fraschini, G.F. and Rizzo, G. (2012), "Comparative high-resolution pQCT analysis of femoral neck indicates different bone mass distribution in osteoporosis and osteoarthritis", Osteoporos. Int., 23(7), 1967-1975.   DOI
44 Wik, T.S., Enoksen, C., Klaksvik, J., Ostbyhaug, P.O., Foss, O., Ludvigsen, J. and Aamodt, A. (2011), "In vitro testing of the deformation pattern and initial stability of a cementless stem coupled to an experimental femoral head, with increased offset and altered femoral neck angles", Proc. Inst. Mech. Eng. H., 225, 797-808.   DOI
45 Wriggers, P. (1995), "Finite element algorithms for contact problems", Arch. Comput. Method. Eng., 2(4), 1-49.   DOI
46 Zimmer, Inc. (2010), "Trabecular Metal$^{TM}$ Primary Hip Prosthesis Surgical Technique", Warsaw I.
47 Sakai, R., Sato, Y., Itoman, M. and Mabuchi, K. (2010), "Initial fixation of a finite element model of an AIHip cementless stem evaluated by micromotion and stress", J. Orthop. Sci., 15(1), 132-139.   DOI
48 Scholl, E., Eggli, S. and Ganz, R. (2000), "Osteolysis in cemented titanium alloy hip prosthesis", J. Arthroplasty, 15(5), 570-5.   DOI
49 Senthi, S., Munro, J.T. and Pitto, R.P. (2011), "Infection in total hip replacement: Meta-analysis", Int. Orthop., 35(2), 253-260.   DOI
50 Shultz, T.R., Blaha, J.D., Gruen, T.A. and Norman, T.L. (2006), "Cortical bone viscoelasticity and fixation strength of press-fit femoral stems: a finite element model", J. Biomech. Eng., 128(1), 7-12.   DOI
51 Striker Corporation (2010), "Striker secure-fit plus max, Surgical Protocol", LSP47M.
52 Varini, E., Bialoblocka-Juszczyk, E., Lannocca, M., Cappello, A. and Cristofolini, L. (2010), "Assessment of implant stability of cementless hip prostheses through the frequency response function of the stem-bone system", Sensors Actuators A: Phys., 163(2), 526-532.   DOI
53 Unger, A.S., Lewis, R.J. and Gruen, T. (2005), "Evaluation of a porous tantalum uncemented acetabular cup in revision total hip arthroplasty: clinical and radiological results of 60 hips", J. Arthroplasty, 20(8), 1002-1009.   DOI
54 Van Der Ploeg, B., Tarala, M., Homminga, J., Janssen, D., Buma, P. and Verdonschot, N. (2012), "Toward a more realistic prediction of peri-prosthetic micromotions", J. Orthop. Res., 30(7), 1147-1154.   DOI
55 Van Rietbergen, B., Huiskes, R., Weinans, H., Sumner, D.R., Turner, T.M. and Galante, J.O. (1993), "The mechanism of bone remodeling and resorption around press-fitted THA stems", J. Biomech., 26(4-5), 369-382.   DOI
56 Viceconti, M., Brusi, G., Pancanti, A. and Cristofolini, L. (2006), "Primary stability of an anatomical cementless hip stem: a statistical analysis", J. Biomech., 39(7), 1169-79.   DOI
57 Viceconti, M., Monti, L., Muccini, R., Bernakiewicz, M. and Toni, A. (2001), "Even a thin layer of soft tissue may compromise the primary stability of cementless hip stems", Clin. Biomech., 16(9), 765-775.   DOI
58 Pilliar, R.M., Lee, J.M. and Maniatopoulos, C.D.D.S. (1986), "Observations on the effect of movement on bone ingrowth into porous-surfaced implants", Clin. Orthop. Relat. Res., 208, 108-113.
59 Parvizi, J., Suh, D.H., Jafari, S.M., Mullan, A. and Purtill, J.J. (2011), "Aseptic loosening of total hip arthroplasty: infection always should be ruled out", Clin. Orthop. Relat. Res., 469(5), 1401-5.   DOI
60 Pettersen, S.H., Wik, T.S. and Skallerud, B. (2009), "Subject specific finite element analysis of implant stability for a cementless femoral stem", Clin. Biomech., 24(6), 480-7.   DOI
61 Race, A., Heffernan, C.D. and Sharkey, P.F. (2011), "The addition of a hydroxyapatite coating changes the immediate postoperative stability of a Plasma-sprayed femoral stem", J. Arthroplasty, 26(2), 289-295.   DOI
62 Chappard, C., Basillais, A., Benhamou, L., Bonassie, A., Brunet-Imbault, B., Bonnet, N. and Peyrin, F. (2006), "Comparison of synchrotron radiation and conventional x-ray microcomputed tomography for assessing trabecular bone microarchitecture of human femoral heads", Med. Phys., 33(9), 3568-77.   DOI
63 Charnley, J. (1970), "Total hip replacement by low-friction arthroplasty", Clin. Orthop. Relat. Res., 72, 7-21.
64 Cristofolini, L., Varini, E., Pelgreffi, I., Cappello, A. and Toni, A. (2006), "Device to measure intraoperatively the primary stability of cementless hip stems", Med. Eng. Phys., 28(5), 475-482.   DOI
65 Darwiche, H., Barsoum, W.K., Klika, A., Krebs, V.E. and Molloy, R. (2010), "Retrospective analysis of infection rate after early reoperation in total hip arthroplasty", Clin. Orthop. Relat. Res., 468(9), 2392-2396.   DOI
66 Mesfar, W., Shirazi-Adl, A. and Dammak, M. (2003), "Modeling of biomedical interfaces with nonlinear friction properties", Bio-med. Mater. Eng., 13(1), 91-101.
67 Mandell, J.A., Carter, D.R., Goodman, S.B., Schurman, D.J. and Beaupre, G.S. (2004), "A conical-collared intramedullary stem can improve stress transfer and limit micromotion", Clin. Biomech., 19(7), 695-703.   DOI
68 Meek, R.M.D., Norwood, T., Smith, R., Brenkel, I.J. and Howie, C.R. (2011), "The risk of peri-prosthetic fracture after primary and revision total hip and knee replacement", J. Bone Joint Surg. Br., 93(1), 96-101.
69 Meneghini, R.M., Hallab, N.J., Berger, R.A., Jacobs, J.J., Paprosky, W.G. and Rosenberg, A.G. (2006), "Stem diameter and rotational stability in revision total hip arthroplasty: a biomechanical analysis", J. Orthop. Surg. Res., 1(1), 1-7.   DOI
70 Monti, L., Cristofolini, L., Toni, A. and Ceroni, R.G. (2001), "In vitro testing of the primary stability of the VerSys enhanced taper stem: a comparative study in intact and intraoperatively cracked femora", Proc. Inst. Mech. Eng. Part H J. Eng. Med., 215(1), 75-83.   DOI
71 Dopico-Gonzalez, C., New, A.M. and Browne, M. (2010), "Probabilistic finite element analysis of the uncemented hip replacement--effect of femur characteristics and implant design geometry", J. Biomech., 43(3), 512-20.   DOI
72 Cattaneo, P.M., Dalstra, M., Frich, L.H., (2001), "A three-dimensional finite element model from computed tomography data: a semi-automated method", Proc. Inst. Mech. Eng. H., 215(2), 203-13.
73 Bieger, R., Ignatius, A., Reichel, H. and Durselen, L. (2013), "Biomechanics of a Short Stem: In Vitro Primary Stability and Stress Shielding of a Conservative Cementless Hip Stem", J. Orthop. Res., 31(8), 717-25.
74 Borsari, V., Fini, M., Giavaresi, G., Tschon, M., Chiesa, R., Chiusoli, L., Salito, A., Rimondini, L. and Giardino, R. (2009), "Comparative in vivo evaluation of porous and dense duplex titanium and hydroxyapatite coating with high roughnesses in different implantation environments", J. Biomed. Mater. Res. - Part A, 89(2), 550-560.
75 Buhler, D.W., Berlemann, U., Lippuner, K., Jaeger, P. and Nolte, L.P. (1997), "Three-dimensional primary stability of cementless femoral stems", Clin. Biomech., 12(7), 75-86.   DOI
76 Tarala, M., Janssen, D., Telka, A., Waanders, D. and Verdonschot, N. (2011), "Experimental versus computational analysis of micromotions at the implant-bone interface", Proc. Inst. Mech. Eng., H., 225(1), 8-15.   DOI
77 Viceconti, M., Muccini, R., Bernakiewicz, M., Baleani, M. and Cristofolini, L. (2000), "Large-sliding contact elements accurately predict levels of bone-implant micromotion relevant to osseointegration", J. Biomech., 33(12), 1611-1618.   DOI
78 Waanders, D., Janssen, D., Mann, K.A. and Verdonschot, N. (2011), "The behavior of the micro-mechanical cement-bone interface affects the cement failure in total hip replacement", J. Biomech., 44(2), 228-234.   DOI
79 Davy, D.T., Kotzar, G.M., Brown, R.H., Heiple, K.G., Goldberg, V.M., Berilla, J. and Burstein, A.H. (1988), "Telemetric force measurements across the hip after total arthroplasty", J. Bone Joint Surg. Am., 70(1), 45-50.   DOI
80 Decking, R., Puhl, W., Simon, U. and Claes, L.E. (2006), "Changes in strain distribution of loaded proximal femora caused by different types of cementless femoral stems", Clin. Biomech., 21(5), 495-501.   DOI
81 Dudda, M., Gueleryuez, A., Gautier, E., Busato, A. and Roeder, C. (2010), "Risk factors for early dislocation after total hip arthroplasty: a matched case-control study", J. Orthop. Surg., 18(2), 179-183.   DOI
82 Dumbleton, J.H., Manley, M.T. and Edidin, A.A. (2002), "A literature review of the association between wear rate and osteolysis in total hip arthroplasty", J. Arthroplasty, 17(5), 649-661.   DOI
83 Reggiani, B., Cristofolini, L., Taddei, F. and Viceconti, M. (2008), "Sensitivity of the primary stability of a cementless hip stem to its position and orientation", Artif. Organ., 32(7), 555-560.   DOI
84 Reggiani, B., Cristofolini, L., Varini, E. and Viceconti, M. (2007), "Predicting the subject-specific primary stability of cementless implants during pre-operative planning: Preliminary validation of subject-specific finite-element models", J. Biomech., 40(11), 2552-2558.   DOI
85 Reimeringer, M., Nuno, N., (2014), "Effect of femoral mechanical properties on primary stability of cementless total hip arthroplasty: a finite element analysis", Adv. Biomech. Appl., 1(3), 187-210.   DOI
86 Park, Y., Choi, D., Hwang, D.S. and Yoon, Y.S. (2009), "Statistical analysis of interfacial gap in a cementless stem FE model", J. Biomech. Eng., 131(2), 1-8.
87 Ostbyhaug, P.O., Klaksvik, J., Romundstad, P. and Aamodt, A. (2010), "Primary stability of custom and anatomical uncemented femoral stems: a method for three-dimensional in vitro measurement of implant stability", Clin. Biomech., 25(4), 318-24.   DOI
88 Pancanti, A., Bernakiewicz, M. and Viceconti, M. (2003), "The primary stability of a cementless stem varies between subjects as much as between activities", J. Biomech., 36(6), 777-785.   DOI
89 Park, Y., Albert, C., Yoon, Y.S., Fernlund, G., Frei, H. and Oxland, T.R. (2010), "The effect of abductor muscle and anterior-posterior hip contact load simulation on the in-vitro primary stability of a cementless hip stem", J. Orthop. Surg. Res., 5(1), 1-14.   DOI
90 Park, Y., Shin, H., Choi, D., Albert, C. and Yoon, Y.S. (2008), "Primary stability of cementless stem in THA improved with reduced interfacial gaps", J. Biomech. Eng., 130(2), 1-7.
91 Langton, D.J., Jameson, S.S., Joyce, T.J., Hallab, N.J., Natu, S. and Nargol, V.F. (2010), "Early failure of metal-on-metal bearings in hip resurfacing and large-diameter total hip replacement: A consequence of excess wear", J. Bone Joint Surg. Br., 92(1), 38-46.
92 Reimeringer, M., Nuno, N., Desmarais-Trepanier, C., Lavigne, M. and Vendittoli, P.A. (2013), "The influence of uncemented femoral stem length and design on its primary stability: a finite element analysis", Comput. Methods Biomech. Biomed. Engin., 16(11), 1221-31.   DOI
93 Riddle, R.C. and Donahue, H.J. (2009), "From streaming-potentials to shear stress: 25 years of bone cell mechanotransduction", J. Orthop. Res., 27(2), 143-9.   DOI
94 Kurtz, S., Ong, K., Lau, E., Mowat, F. and Halpern, M. (2007), "Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030", J. Bone Joint Surg. Am., 89(4), 780-785.
95 Lannocca, M., Varini, E., Cappello, A., Cristofolini, L. and Bialoblocka, E. (2007), "Intra-operative evaluation of cementless hip implant stability: a prototype device based on vibration analysis", Med. Eng. Phys., 29(8), 886-94.   DOI
96 Learmonth, I.D., Young, C. and Rorabeck, C. (2007), "The operation of the century: total hip replacement", Lancet, 370(9597), 1508-1519.   DOI
97 Lim J, Jeong J, Ha S, (2003),"Design of Composite Hip Prostheses Considering the Long-Term Behavior of the Femur", JSME Int J. Ser C. Mech Syst. Mach Elem Manuf, 46(3), 991-999.   DOI
98 Lindahl, H. (2007), "Epidemiology of periprosthetic femur fracture around a total hip arthroplasty", Injury, 38(6), 651-654.   DOI
99 Lord, G.A., Hardy, J.R. and Kummer, F.J. (1979), "An uncemented total hip replacement: experimental study and review of 300 madreporique arthroplasties", Clin. Orthop. Relat. Res., 141, 2-16.