• Title/Summary/Keyword: Conformal Deformation

Search Result 21, Processing Time 0.026 seconds

SOME RESULTS ON THE GEOMETRY OF A NON-CONFORMAL DEFORMATION OF A METRIC

  • Djaa, Nour Elhouda;Zagane, Abderrahim
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.3
    • /
    • pp.865-879
    • /
    • 2022
  • Let (Mm, g) be an m-dimensional Riemannian manifold. In this paper, we introduce a new class of metric on (Mm, g), obtained by a non-conformal deformation of the metric g. First we investigate the Levi-Civita connection of this metric. Secondly we characterize the Riemannian curvature, the sectional curvature and the scalar curvature. In the last section we characterizes some class of proper biharmonic maps. Examples of proper biharmonic maps are constructed when (Mm, g) is an Euclidean space.

MODULI OF SELF-DUAL METRICS ON COMPLEX HYPERBOLIC MANIFOLDS

  • Kim, Jaeman
    • Bulletin of the Korean Mathematical Society
    • /
    • v.39 no.1
    • /
    • pp.133-140
    • /
    • 2002
  • On compact complex hyperbolic manifolds of complex dimension two, we show that the dimension of the space of infinitesimal deformations of self-dual conformal structures is smaller than that of the deformation obstruction space and that every self-dual metric with covariantly constant Ricci tensor must be a standard one upto rescalings and diffeomorphisms.

CONFORMAL DEFORMATION ON A SEMI-RIEMANNIAN MANIFOLD (I)

  • Jung, Yoon-Tae;Lee, Soo-Young
    • Bulletin of the Korean Mathematical Society
    • /
    • v.38 no.2
    • /
    • pp.223-230
    • /
    • 2001
  • In this parper, we considered the uniqueness of positive time-solution to equation ${\Box}_g$u(t,$\chi$) - $c_n$u(t,$\chi$) + $c_n$u(t,$\chi$)$^[\frac{n+3}{n-3}]$ = 0, where $c_n$ = $\frac{n-1}{4n}$ and ${\Box}_g$ is the d'Alembertian for a Lorentzian warped manifold M = {a,$\infty$] $\times_f$ N.

  • PDF

ON THE CONFORMAL DEFORMATION OVER WARPED PRODUCT MANIFOLDS

  • YOON-TAE JUNG;CHEOL GUEN SHIN
    • The Pure and Applied Mathematics
    • /
    • v.4 no.1
    • /
    • pp.27-33
    • /
    • 1997
  • Let (M = B$\times$f F, g) be an ($n \geq3$ )-dimensional differential manifold with Riemannian metric g. We solve the following elliptic nonlinear partial differential equation (equation omitted). where $\Delta_{g}$ is the Laplacian in the $\Delta$g-metric and ($h(\chi)$) is the scalar curvature of g and ($H(\chi)$) is a function on M.

  • PDF

CONFORMAL DEFORMATION ON A SEMI-RIEMANNIAN MANIFOLD (II)

  • Jung, Yoon-Tae;Lee, Soo-Young;Shin, Mi-Hyun
    • The Pure and Applied Mathematics
    • /
    • v.10 no.2
    • /
    • pp.119-126
    • /
    • 2003
  • In this paper, when N is a compact Riemannian manifold, we considered the positive time solution to equation $\Box_gu(t,x)-c_nu(t,x)+c_nu(t,x)^{(n+3)/(n-1)}$ on M =$(-{\infty},+{\infty})\;{\times}_f\;N$, where $c_n$ =(n-1)/4n and $\Box_{g}$ is the d'Alembertian for a Lorentzian warped manifold.

  • PDF

EMBEDDING OPEN RIEMANN SURFACES IN 4-DIMENSIONAL RIEMANNIAN MANIFOLDS

  • Ko, Seokku
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.1
    • /
    • pp.205-214
    • /
    • 2016
  • Any open Riemann surface has a conformal model in any orientable Riemannian manifold of dimension 4. Precisely, we will prove that, given any open Riemann surface, there is a conformally equivalent model in a prespecified orientable 4-dimensional Riemannian manifold. This result along with [5] now shows that an open Riemann surface admits conformal models in any Riemannian manifold of dimension ${\geq}3$.

ON THE CONTACT CONFORMAL CURVATURE TENSOR$^*$

  • Jeong, Jang-Chun;Lee, Jae-Don;Oh, Ge-Hwan;Park, Jin-Suk
    • Bulletin of the Korean Mathematical Society
    • /
    • v.27 no.2
    • /
    • pp.133-142
    • /
    • 1990
  • In this paper, we define a new tensor field on a Sasqakian manifold, which is constructed from the conformal curvature tensor field by using the Boothby-Wang's fibration ([3]), and study some properties of this new tensor field. In Section 2, we recall definitions and fundamental properties of Sasakian manifold and .phi.-holomorphic sectional curvature. In Section 3, we define contact conformal curvature tensor field on a Sasakian manifold and prove that it is invariant under D-homothetic deformation due to S. Tanno([13]). In Section 4, we study Sasakian manifolds with vanishing contact conformal curvature tensor field, and the last Section 5 is devoted to studying some properties of fibred Riemannian spaces with Sasakian structure of vanishing contact conformal curvature tensor field.

  • PDF