THE NONEXISTENCE OF CONFORMAL DEFORMATIONS ON SPACE-TIMES

Yoon-Tae Jung and Sang-Cheol Lee

Abstract

In this paper, when N is a compact Riemannian manifold, we discuss the nonexistence of conformal deformations on space-times $M=(a, \infty) \times{ }_{f} N$ with prescribed scalar curvature functions.

I. Introduction

In a recent study ([5, 6, 7]), M.C. Leung has studied the problem of scalar curvature functions on Riemannian warped product manifolds and obtained partial results about the existence and nonexistence of Riemannian warped metric with some prescribed scalar curvature function. He has studied the uniqueness of positive solution to equation

$$
\begin{equation*}
\Delta_{g_{0}} u(x)+d_{n} u(x)=d_{n} u(x)^{\frac{n+2}{n-2}}, \tag{1.1}
\end{equation*}
$$

where $\Delta_{g_{0}}$ is the Laplacian operator for an n-dimensional Riemannian manifold (N, g_{0}) and $d_{n}=\frac{n-2}{4(n-1)}$. Equation (1.1) is derived from the conformal deformation of Riemannian metric(cf. [1, 3, 4, 7]).

Similarly, let (N, g_{0}) be a compact Riemannian n-dimensional manifold. We consider the ($n+1$)-dimensional Lorentzian warped manifold $M=(a, \infty) \times_{f} N$ with the metric $g=-d t^{2}+f(t)^{2} g_{0}$, where f is a positive function on (a, ∞). Let $u(t, x)$ be a positive smooth function on M and let g have a negative constant scalar curvature equal to $-c$, where $c>0$. If the conformal metric $\bar{g}=u(t, x)^{\frac{4}{n-1}} g$ has a prescribed function $h(t, x)$ as a scalar curvature, then $u(t, x)$ satisfies equation

[^0]\[

$$
\begin{equation*}
\frac{4 n}{n-1} \square_{g} u(t, x)+c u(t, x)+h(t, x) u(t, x)^{\frac{n+3}{n-1}}=0 \tag{1.2}
\end{equation*}
$$

\]

where \square_{g} is the d'Alembertian for a Lorentzian warped manifold $M=$ $(a, \infty) \times_{f} N$.

In this paper, we study the nonexistence of a positive solution to equation (1.2).

2. Main Results

In this section, we let (N, g_{0}) be a compact Riemannian n-dimensional manifold with $n \geq 3$ and without boundary. The following proposition is well known(cf. Theorem 5.4 in [2]).

Proposition 1. Let $M=(a, \infty) \times_{f} N$ have a Lorentzian warped product metric $g=-d t^{2}+f(t)^{2} g_{0}$. Then the Laplacian \square_{g} is given by

$$
\square_{g}=-\frac{\partial^{2}}{\partial t^{2}}-\frac{n f^{\prime}(t)}{f(t)} \frac{\partial}{\partial t}+\frac{1}{f(t)^{2}} \Delta_{x}
$$

where Δ_{x} is the Laplacian on fiber manifold N.
By Proposition 1, equation (1.2) is changed into the following equation

$$
\begin{align*}
& \frac{\partial^{2} u(t, x)}{\partial t^{2}}+\frac{n f^{\prime}(t)}{f(t)} \frac{\partial u(t, x)}{\partial t}-\frac{1}{f(t)^{2}} \Delta_{x} u(t, x) \tag{2.1}\\
- & c_{n} u(t, x)-H(t, x) u(t, x)^{\frac{n+3}{n-1}}=0,
\end{align*}
$$

where $c_{n}=\frac{n-1}{4 n} c$ and $H(t, x)=\frac{n-1}{4 n} h(t, x)$.
If $u(t, x)=u(t)$ is a positive function with only variable t and if $H(t, x)=H(t)$ is also a function of only variable t, then equation (2.1) becomes

$$
\begin{equation*}
u^{\prime \prime}(t)+\frac{n f^{\prime}(t)}{f(t)} u^{\prime}(t)=c_{n} u(t)+H(t) u(t)^{\frac{n+3}{n-1}} . \tag{2.2}
\end{equation*}
$$

The proof of the following theorem is more extension than that of Theorem 4.9 in [7].

Theorem 2. Let $u(t)$ be a positive solution of equation (2.2) and let $H(t)$ satisfy $H(t) \geq c_{1}$, where c_{1} is a positive constant. Assume that there exist positive constants t_{0} and C_{0} such that $\left|\frac{f^{\prime}(t)}{f(t)}\right| \leq C_{0}$ for all $t>t_{0}$. Then $u(t)$ is bounded from above.

Proof. From equation (2.2) we have

$$
\begin{equation*}
\frac{\left(f^{n} u^{\prime}\right)^{\prime}}{f^{n}}=c_{n} u+H(t) u^{\frac{n+3}{n-1}} \tag{2.3}
\end{equation*}
$$

Let $\chi \in C_{0}^{\infty}((a, \infty))$ be a cut-off function. Multiplying both sides of equation (2.3) by $\chi^{n+1} u$ and then using integration by parts we obtain

$$
\begin{aligned}
-\int_{a}^{\infty}\left(f^{n} u^{\prime}\right)\left(\frac{\chi^{n+1} u}{f^{n}}\right)^{\prime} d t & =c_{n} \int_{a}^{\infty} \chi^{n+1} u^{2} d t+\int_{a}^{\infty} H(t) \chi^{n+1} u^{\frac{2 n+2}{n-1}} d t \\
& \geq c_{1} \int_{a}^{\infty} \chi^{n+1} u^{\frac{2 n+2}{n-1}} d t
\end{aligned}
$$

From the left side of the above equation, we have

$$
-\left(f^{n} u^{\prime}\right)\left(\frac{\chi^{n+1} u}{f^{n}}\right)^{\prime}=-(n+1) \chi^{n} u \chi^{\prime} u^{\prime}-\chi^{n+1}\left|u^{\prime}\right|^{2}+n \chi^{n+1} u u^{\prime} \frac{f^{\prime}}{f}
$$

Applying the Cauchy inequality, we get

$$
\begin{aligned}
-(n+1) \chi^{n} u \chi^{\prime} u^{\prime} & =-2\left(\frac{n+1}{\sqrt{2}} \chi^{\frac{n+1}{2}-1} u \chi^{\prime}\right)\left(\frac{1}{\sqrt{2}} \chi^{\frac{n+1}{2}} u^{\prime}\right) \\
& \leq \frac{(n+1)^{2}}{2} \chi^{n-1} u^{2}\left|\chi^{\prime}\right|^{2}+\frac{1}{2} \chi^{n+1}\left|u^{\prime}\right|^{2}
\end{aligned}
$$

and

$$
\begin{aligned}
n \chi^{n+1} u u^{\prime} \frac{f^{\prime}}{f} & =2\left(\frac{n}{\sqrt{2}} \chi^{\frac{n+1}{2}} u \frac{f^{\prime}}{f}\right)\left(\frac{1}{\sqrt{2}} \chi^{\frac{n+1}{2}} u^{\prime}\right) \\
& \leq \frac{n^{2}}{2} \chi^{n+1}\left(\frac{f^{\prime}}{f}\right)^{2} u^{2}+\frac{1}{2} \chi^{n+1}\left|u^{\prime}\right|^{2}
\end{aligned}
$$

Together with the above equations, we obtain

$$
\begin{aligned}
\frac{(n+1)^{2}}{2} \int_{a}^{\infty}\left(\frac{f^{\prime}}{f}\right)^{2} \chi^{2} u^{2} d t & +\frac{(n+1)^{2}}{2} \int_{a}^{\infty} \chi^{n-1} u^{2}\left|\chi^{\prime}\right|^{2} d t \\
& \geq c_{1} \int_{a}^{\infty} \chi^{n+1} u^{\frac{2 n+2}{n-1}} d t
\end{aligned}
$$

Applying Young's inequality and using the bound $\left|\frac{f^{\prime}}{f}\right| \leq C_{0}$, we have

$$
\begin{equation*}
c_{1} \int_{a}^{\infty} \chi^{n+1} u^{\frac{2 n+2}{n-1}} d t \leq C^{\prime} \int_{a}^{\infty}\left(\left|\chi^{\prime}\right|^{n+1}+\chi^{n+1}\right) d t \tag{2.4}
\end{equation*}
$$

where C^{\prime} is a positive constant. Let $\chi \equiv 0$ on $(a, r] \cup[r+3, \infty)$ with $r>t_{0}$ and $\chi \equiv 1$ on $[r+1, r+2], \chi \geq 0$ on $[a, \infty)$ and $\left|\chi^{\prime}\right| \leq \frac{1}{2}$. From equation (2.4) we have

$$
\int_{r+1}^{r+2} u^{\frac{2 n+2}{n-1}} d t \leq C^{\prime \prime}
$$

for all $r>t_{0}$, where $C^{\prime \prime}$ is a constant independent on r. Therefore u is bounded from above.

Theorem 3. Let (M, g) be a Lorentzian manifold with scalar curvature equal to $-c$. Assume that there exist positive constants t_{0} and C_{0} such that $\left|\frac{f^{\prime}(t)}{f(t)}\right| \leq C_{0}$ for all $t>t_{0}$. If $H(t)$ is a scalar curvature satisfying $H(t) \geq c_{1}$, where c_{1} is a positive constant, then equation (2.2) has no positive solution.

Proof. If $u=u(t)$ is a positive solution of equation (2.2), then by Theorem $2 u(t)$ is bounded from above on (a, ∞). Then, by OmoriYau maximum principle (c.f. [8]), there exists a sequence $\left\{t_{k}\right\}$ such that $\lim _{k \rightarrow \infty} u\left(t_{k}\right)=\sup _{t \in[a, \infty)} u(t),\left|u^{\prime}\left(t_{k}\right)\right| \leq \frac{1}{k}$ and $u^{\prime \prime}\left(t_{k}\right) \leq \frac{1}{k}$. Since $\sup _{t \in[a, \infty)} u(t)=c_{2}>0$, there exist a number $\epsilon>0$ and K such that

$$
\left(c_{n} u\left(t_{k}\right)+H\left(t_{k}\right) u\left(t_{k}\right)^{\frac{n+3}{n-1}}\right)>\epsilon
$$

for all $k>K$, which is a contradiction to the fact that

$$
u^{\prime \prime}\left(t_{k}\right)+\frac{n f^{\prime}\left(t_{k}\right)}{f\left(t_{k}\right)} u^{\prime}\left(t_{k}\right) \leq \frac{1+n C_{0}}{k}
$$

for all $k>K$. Therefore equation (2.2) has no positive solution.

The following corollary is derived easily from the previous theorems
Corollary 4. Let $\left.(M, g)=\left((a, \infty) \times_{f} N\right), g\right)$ be a Lorentzian manifold with scalar curvature equal to $h(t) \leq 0$. Assume that there exist positive constants t_{0} and C_{0} such that $\left|\frac{f^{\prime}(t)}{f(t)}\right| \leq C_{0}$ for all $t>t_{0}$. If $H(t)=C$, where C is a positive constant, then the following equation

$$
u^{\prime \prime}(t)+\frac{n f^{\prime}(t)}{f(t)} u^{\prime}(t)=\frac{4 n}{n-1} h(t) u(t)+C u(t)^{\frac{n+3}{n-1}}
$$

also has no positive solution.

References

1. P. Aviles and R. McOwen, Conformal deformation to constant negative scalar curvature on noncompact Riemannian manifolds, Diff.Geom.27(1988), 225239.
2. J.K. Beem, P.E. Ehrlich and Th.G. Powell, Warped product manifolds in relativity, Selected Studies (Th.M. Rassias, G.M. Rassias, eds.), North-Holland, 1982, 41-56.
3. J.L. Kazdan and F.W. Warner, Scalar curvature and conformal deformation of Riemannian structure, J.Diff.Geo. 10(1975), 113-134.
4. J.L. Kazdan and F.W. Warner, Existence and conformal deformation of metrics with prescribed Guassian and scalar curvature, Ann. of Math. 101(1975), 317331.
5. M.C. Leung, Conformal scalar curvature equations on complete manifolds, Comm. in P.D.E. 20 (1995), 367-417
6. M.C. Leung, Conformal deformation of warped products and scalar curvature functions on open manifolds, preprint.
7. M.C.Leung, Uniqueness of Positive Solutions of the Equation $\Delta_{g_{0}}+c_{n} u=$ $c_{n} u^{\frac{n+2}{n-2}}$ and Applications to Conformal Transformations, preprint.
8. A. Ratto, M. Rigoli and G. Setti, On the Omori-Yau maximum principle and its applications to differential equations and geometry, J. Functional Analysis 134(1995), 486-510.

Department of Mathematics,
Chosun University,
Kwangju, 501-759, S.Korea.
E-mail: ytajung @chosun.ac.kr
Department of Mathematics, Chosun University,
Kwangju, 501-759, S.Korea.

[^0]: Received February 8, 2010. Accepted March 11, 2010.
 2000 Mathematics Subject Classification: 53C21, 53C50, 58C35, 58 J 05.
 Key words and phrases: warped product, scalar curvature, conformal deformation.

 The first author was supported by Research Fund from Chosun University, 2009.

