• Title/Summary/Keyword: Confidence

Search Result 8,956, Processing Time 0.035 seconds

Parametric Empirical Bayes Estimators with Item-Censored Data

  • Choi, Dal-Woo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.8 no.2
    • /
    • pp.261-270
    • /
    • 1997
  • This paper is proposed the parametric empirical Bayes(EB) confidence intervals which corrects the deficiencies in the naive EB confidence intervals of the scale parameter in the Weibull distribution under item-censoring scheme. In this case, the bootstrap EB confidence intervals are obtained by the parametric bootstrap introduced by Laird and Louis(1987). The comparisons among the bootstrap and the naive EB confidence intervals through Monte Carlo study are also presented.

  • PDF

The Range of confidence Intervals for ${\sigma}^{2}_{A}/{\sigma}^{2}_{B}$ in Two-Factor Nested Variance Component Model

  • Kang, Kwan-Joong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.9 no.2
    • /
    • pp.159-164
    • /
    • 1998
  • The two-factor nested variance component model with equal numbers in the cells are given by $y_{ijk}\;=\;{\mu}\;+\;A_i\;+\;B_{ij}\;+\;C_{ijk}$ and the confidence intervals for the ratio of variance components, ${\sigma}^{2}_{A}/{\sigma}^{2}_{B}$ are obtained in various forms by many authors. This article shows the probability ranges of these confidence intervals on ${\sigma}^{2}_{A}/{\sigma}^{2}_{B}$ proved by the mathematical computation.

  • PDF

Bootstrap Confidence Bounds for P(X>Y)

  • Lee, In Suk;Cho, Jang Sik
    • Journal of Korean Society for Quality Management
    • /
    • v.23 no.4
    • /
    • pp.64-73
    • /
    • 1995
  • In this paper, the stress strength model is assumed for the populations of X and Y, where distributions of X and Y are independent normal with unknown parameters. We construct bootstrap confidence intervals for reliability, R=P(X>Y) and compare the accuracy of the proposed bootstrap confidence intervals and classical confidence interval through Monte Carlo simulation.

  • PDF

Balanced Simultaneous Confidence Intervals in Logistic Regression Models

  • Lee, Kee-Won
    • Journal of the Korean Statistical Society
    • /
    • v.21 no.2
    • /
    • pp.139-151
    • /
    • 1992
  • Simultaneous confidence intervals for the parameters in the logistic regression models with random regressors are considered. A method based on the bootstrap and its stochastic approximation will be developed. A key idea in using the bootstrap method to construct simultaneous confidence intervals is the concept of prepivoting which uses the transformation of a root by its estimated cumulative distribution function. Repeated use of prepivoting makes the overall coverage probability asymptotically correct and the coverage probabilities of the individual confidence statement asymptotically equal. This method is compared with ordinary asymptotic methods based on Scheffe's and Bonferroni's through Monte Carlo simulation.

  • PDF

Bootstrap Confidence Bounds for P(X>Y) in 1-Way Random Effect Model with Equal Variances

  • Kim, Dal Ho;Cho, Jang Sik
    • Journal of Korean Society for Quality Management
    • /
    • v.24 no.1
    • /
    • pp.87-95
    • /
    • 1996
  • We construct bootstrap confidence bounds for reliability, R=P(X>Y), where X and Y are independent normal random variables. 1-way random effect models with equal variances are assumed for the populations of X and Y. We compare the accuracy of the proposed bootstrap confidence bounds and classical confidence bound for small samples via Monte Carlo simulation.

  • PDF

The Confidence Intervals for Logistic Model in Contingency Table

  • Cho, Tae-Kyoung
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.3
    • /
    • pp.997-1005
    • /
    • 2003
  • We can use the logistic model for categorical data when the response variables are binary data. In this paper we consider the problem of constructing the confidence intervals for logistic model in I${\times}$J${\times}$2 contingency table. These constructions are simplified by applying logit transformation. This transforms the problem to consider linear form which called the logit model. After obtaining the confidence intervals for the logit model, the reverse transform is applied to obtain the confidence intervals for the logistic model.

A Simulation Study for the Confidence Intervals of p by Using Average Coverage Probability

  • Kim, Daehak;Jeong, Hyeong-Chul
    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.3
    • /
    • pp.859-869
    • /
    • 2000
  • In this paper, various methods for finding confidence intervals for p of binomial parameter are reviewed. Also we introduce tow bootstrap confidence intervals for p. We compare the performance of bootstrap methods with other methods in terms of average coverage probability by Monte Carlo simulation. Advantages of these bootstrap methods are discussed.

  • PDF

Empirical Bayes Inferences in the Burr Distribution by the Bootstrap Methods

  • Cho, Kil-Ho;Cho, Jang-Sik;Jeong, Seong-Hwa;Shin, Jae-Seock
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.3
    • /
    • pp.625-632
    • /
    • 2004
  • We consider the empirical Bayes confidence intervals that attain a specified level of EB coverage for the scale parameter in the Burr distribution under type II censoring data. Also, we compare the coverage probabilities and the expected confidence interval lengths for these confidence intervals through simulation study.

  • PDF

Sequential Estimation of variable width confidence interval for the mean

  • Kim, Sung Lai
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.14 no.2
    • /
    • pp.47-54
    • /
    • 2001
  • Let {Xn, n = 1,2,${\cdots}$} be i.i.d. random variables with the only unknown parameters mean ${\mu}$ and variance a ${\sigma}^2$. We consider a sequential confidence interval C1 for the mean with coverage probability 1-${\alpha}$ and expected length of confidence interval $E_{\theta}$(Length of CI)/${\mid}{\mu}{\mid}{\leq}k$ (k : constant) and give some asymptotic properties of the stopping time in various limiting situations.

  • PDF

Tolerance Intervals for Expected Time at the Given Reliability and Confidence Level (신뢰도와 신뢰수준을 고려한 기대수명 공차구간 설정에 관한 연구)

  • Choi Sung woon
    • Journal of the Korea Safety Management & Science
    • /
    • v.7 no.2
    • /
    • pp.73-83
    • /
    • 2005
  • This paper is to propose tolerance intervals for expected time at the given reliability and confidence level for continuous and discrete reliability model. We consider guaranteed - coverage tolerance intervals, that is, reliability - confidence level tolerance intervals. These proposed methodologies can be applied to any industrial application where the customer's operating specification require a high level of reliability.