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Bootstrap Confidence Bounds for P(X>Y)
in 1-Way Random Effect Model with Equal Varlances

Dal Ho K1m « Jang Slk Cho
Dept of Statlstlcs Kyungpook Natlonal Umversxty, Taegu, Korea

Abstract

We construct bootstrap confidence bounds for reliability, R=P(X>Y), where X
and Y are independent normal random variables. 1-way random effect models with
equal variances are assumed for the populatlons of X and Y. We compare the
accuracy of the proposed bootstrap confidence bounds and classical confidence
bound for small samples via Monte Carlo simulation. . ‘ ‘

1. Introduction

The random effect model is appropriate for measurements when the number of
batches in a populatlon is large. In statistical quality control and reliability analysis
sometimes one is 1nterested in R= P(X>Y). For example, suppose that a quality
control engineer decides to compare failure times (X and Y) of automobile
batteries of types A and B, respectively. He randomly selects %, batteries from
each of /, batches of type A and #, from each of /, batches of type B batteries.
Then he tests the batteries under a specific condition and records failure times.
The aim of the engmeer is to find a confidence bound for the reliability R. For
51mpl1c1ty, we’assume that 1-way random effect models for the populatlons of X
and Y have equal variances: : : -

Reisser and Guttman(1986) examined statistical inference for R in ‘stress
strength model with normal distribution. Guttman, Johnson, Bhattacharyya and
Reisser(1988). obtained confldence limits for R in stress strength models with
explanatory variables. Am1nzadeh(1991) derived confidence bounds based on the
approx1mate dlstnbutlons for R under 1-way random effect model. Since the true
distribution of the est1mator for R is often skewed and blased for a small sample,
the interval based on the asymptotic normal dlstnbutmn may detenorate the
" accuracy. We will use the bootstrap method to rectify these problems. Efron( 1979)
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initially introduced the bootstrap method to assign the accuracy for an estimator.
To construct approximate confidence interval for a parameter, Efron(1981, 1982,
1987) and Hall(1988) proposed the percentile method, the bias correct method(BCu
method), the bias correct acceleration method(BCa method), and the percentile /
method, etc.

In this paper, we propose several bootstrap confidence bounds for R based on
percentile, BC, BCa and percentile- methods under 1-way random effect model
with equal variances. Also we investigate the accuracy of the proposed bootstrap
confidence intervals and confidence interval based on Aminzadeh(1991)’s method
through Monte Carlo simulation. In particular, we observe the accuracy of these
intervals for small sample and/or large value of R

2. Preliminaries

We assume that #, measurements from each of /, batches of population 1 and .
measurements from each of /, batches of population 2 are selected. Let u, and ;.
are overall means for populations 1 and 2. And let A and B are batch effects for
populations 1 and 2. Then 1-way random effect models for X and Y are defined «s
follows:

XU’ i +jll +eii~ i= 1: z) e, Ry, ] = 1’ 2, Tty ll (2-:“
and

qu = Uy +Br +8(,'rs q= 1) 2’ Ry, V= 1’ 2’ Tty l? (2?’,

where A;, ¢;, B,, &, are stochastically independent normal random variables with
means zero and standard deviations, ¢,, g., g4, 0., respectively.

From (2.1) and (2.2) we can see that X;,~N(y,.0?)and Y,, ~N(y,, ¢}), where ¢!
=g4+¢! and o’ =% +ol. For equal variances ¢’ =g’ =¢’, the reliability is
computed as R = ®(§), where &( - ) is the cumulative distribution function of a
standard normal random variable and 6 = (u, —p,)/ V20'. Let X = (X, Xy, -,
X.,.4) and Y= (Y, , Y, -, Y..,) be vecrors of measurements for X and Y,
respectively. And let N, =n,/, and N, ==»,/, . By Aminzadeh(1991), the estimator R
of R is given hy
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R =00 = o((X..~Y.)/ V2s*) (2.3)

w1 ny b

where X.=Y Y X,/N.. Y.=SYY./N,, ¢ =(f¢+gé)I(f+g)
1

6; =(Sim, —D+S%)/n, 6, =(Sin, -1 +S})/n,,
f =W +DU-DN/N R +n) +A -2 ) -1,
g =\ +1) U, ~ DN,/ {N,(k +n;") +(1 —n," ), —1)},

k]:(fi\/az, kzz()'i,/n‘i.

Note that S%, S! and S%, S are mean squares within and between batches for
populationl 1 and 2, respectively.

In order to construct approximate confidence interval for R based on the normal
approximation, Aminzadeh(1991) proved that 6 =(X..—Y..)/ v2 & has asymptotic
normal distribution with mean é and variance ¢! =K /2 +6'/{2(f+g)}, where

K= u-1Vk/IN G+ +0, —Dk/IN,k +1D+1/N,+1/N,.

The asymptotic variance of & is estimated by ¢! =K /248112 f + )}, where K, f
and £ are computed by using 6% =(S% —S*)/n,, 6% =(S4 =S m,, by =(s%/S? — 1)/ n,
and &, =(S% /S? —1)/n, instead of ¢4, c%, k, and k,, respectively. Hence, 100(1 —2¢)
% Aminzadeh’s confidence interval for R is given by

(D5 +27 - 6,), B +27 - 6,)), (2.4)

where z“ is the 100 « percentile of standard normal distribution.

3. Bootstrap Confidence Bounds for Reliability

The bootstrap procedure is a resampling scheme that one attempts to learn the
sampling properties of a statistic by recomputing its value on the basis of a new
sample realized from the original one. The bootstrap procedure for construction of
bootstrap estimatore for R can be described as follows:
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(1) Compute the plug-in estimates of ., u, and ¢ given by X...Y.. and S% -
(fet4 g62)/( f +2) from X and Y, respectively.

(2) Construct the sampling distribution  and G (from X and ¥) based on X.
Y..and S¢, respectively. That is, F~N(X.., $%) and G~N(¥ .., S2).

(3) Generate B random samples of size N, and N, from fixed ¥ and C.
respectively. The corresponding samples called the bootsrrap samples ar:
denoted by X *=(X*,, X*,, «-, X") and Y*=(Y*,, Y%, . Y*, ) b=1, .,
.-, B.

(4) Compute R* =®(5*), where §* =(X* ~V*)/ /2 §* . Wecall X*, ¥*, S~
and R* by bootstrap estimators for u,, n,, 6, and R, respectively.

3.1 Percentile method

The confidence interval by the bootstrap percentile method (percentile intervat)
is obtained by percentiles of the empirical bootstrap distribution of R* Let H* be
the empirical cumulative distribution function of R* Then it is constructed bv

~ R ~
H*s)=B" me]](R** <'s), where s is arbitrary real value and I(-) is an indicator

function. And let /7*" () be the 100« empirical percentile of R* given by
H*'(@) = inf{s: H*G) > 2} (3.1}

That is, H*'(a) is the Bath value in the ordered list of the B replications of R* . If
Ba is not an integer, we can take the largest integer that is less than or equal to
(B+1)a. Then 100{1—2x)% percentile interval for R is approximated by

(H*'(2), H*'(1—a) (3.2)

3.2 Bias correct method
The BC method adjusts a possible bias in estimating K. The bias correction is
given by

2 =0 (H*(R) = 0" I:B“ gfll(k*bsé)], (3.3)

where ®'( - ) indicates the inverse function of the standard normal cumulative
distribution function. That is, 2, is the discrepancy between the medians of R*
and R in normal unit. Therefore, we have 100(1 —2x)% approximate BC interval
for R given by
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(H* (), H* (), (3.4)
where o, = ®(22,+z")and a, = ®(2 2, +2" 7).

3.3 Bias correct acceleration method

The BCa method corrects both the bias and standard error for R. The
confidence interval by BCa method(BCa interval) requires to calculate the bias-
correction constant 2, and the acceleration constant . In fact, the bias-correction
constant %, is the siume as that of BC method. And &, measured on a normalized
scale, refers to the rate of change of the standard error of R with respect to the
true reliability R.

For the parametric bootstrap method, all calculations relate only to the sufficient

[

statistic X., Y. and S* for i, 4, and o°, respectively, where S* =(}_ (X, —

F B A |

L)

X! +LY (Y, -V )) /! (N, +N,) Of course, X.., Y.. and S* are distributed

Y irol
Ny, o' /N, Ny, ¢'/N,) and {o*/(N,+N,)} - X*(N,+N, —2), respectively.
Also. X.., Y.. and S' are stochastically independent. Let 7' =(X.Y. S and
1" =(u . py, 6°). Then the joint probability density function of " can be written as

£ ﬁ’) = fo f{’)eXD[gu( _fl’, ﬂ’> -, ( ZA],)], (3.5)

where

Fol i ) =[ 20T (N, +N, —~2)/2) - 252 [0 NN, - (S2)M T
&ty 7)={-N, X.?=2N,p, X.. +N, Y.? =-2N,p, Y.. —(N, +N,)S"} /26
+(N, - 3)/2 - log (S2)+(N, —-3)/2 - log(S?)
and W, (n')=(N,u: +N,1}) /20" +log(o”).
For multiparameter family case, we will find a following Stein’s construction
(1956). That is, we replace the multiparameter family I ={f,(Z)} by the least
favorable one parameter family <= f4(Z2)= f3.0(Z)}, where Z=(X, Y). Then we

first obtain @ such that the least favorable direction at n= 7 is defined to be @ =
(55)"‘ V3, where -Ci is Fisher information matrix and @5 is the gradient of §

given by @'3 2%2' |r -. By some algebraic calculation, we have
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[NJSY 0 0
¢, = 0 N./S 0
L0 0 (N, +N.)/(2S")
and
- 1/V28°
Vs, = ~1/ V25"
L - (XY@ V2(8)Y

Hence, we have o' =(W,, W,, W,), where W, = VSTV N, W, = VST (V2N

and W, = —(X.—-V.) V'S'/ (V2 N, +N.,)). By the method of Efron(1987), & can he
obtained as

. d W, (1t A@) . - .
where W7 (0) = - "9(;;2;"-'*!’—~1H. Calculating W' ( - ) and @, we can obtain

\‘i](zl (0) = Wé/(LSl )2 +Nl (Sl Wl ’—XW:‘ )2 /(Sz ):!
+ NAS'W, =Y W) /(S

and
YY) = 2Wi/S +3N, - {2 X.. S'WW; - X.! Wi-S'"Ww,: /5"
4+ 3N, - {2Y. . S'W.W!-Y ‘Wi -S'WiW,}/S".
Therefore, we have 100(1 —2x)% approximate BCa interval for R by

((D(ﬁ* l(-“:z))y‘b([’:’*'l‘m))), (3.7

where o, = @[ 2, F( 2, +z")/{1—al z,+z")};| and

ay =@ 2 +(2+z"){1-al z,+2" ")}

3.4 Percentile-{ method

The confidence interval by the percentile-f method (percentile-¢ interval) ic
constructed by using the bootstrap distribution of an approximately pivoial
quantity for 5 instead of the bootstrap distribution of 6. We define an approximate
bootstrap pivetal quantity for 5 by
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5*5'”11) = ((g* '"5) / &*a, (38)
where ¢* is the bootstrap estimator of o;, that is,
6% = (K*2 +5"[{2(f*+49n" (3.9)

We compute the empirical distribution function H *un Of 3% DY
- B -
Hb*srw; (‘) = B ];I(‘s‘bsmn 3 S), \/.3.10)
=]

for all 5. Let H* '.,(x) denote 100« empirical percentile of o*sun. Actually we

compute H* s {al by
I;I* lsn/n(&) == il’lf{SZ g*“]srur)(é) = (O()} (311)

That is. H* 'su,(2) is the Bath value in the ordered list of the B replications of
5*.n. Then we have 100(1 —2a)% approximate percentile-¢ interval for R by

((D(i“+ 5(« " E“I.*‘xg'ru‘v)(a)), (D(fg*— (;‘5 * H*ilgn:n(lwa))) [/312)

4. Monte Carlo Simulation Studies

To compare the approximate bootstrap confidence intervals with the confidence
interval based on asymptotic normal distribution, we compute the results obtained
in Section 2 and Section 3. The methods are compared mainly based on coverage
probability and interval length. The normal random numbers were generated by
IMSL subroutine RNNOF, We use the true reliabilities R = 0.3, 0.5, 0.7, 0.9 and
batch sizes /, = /. = 3. 5, 10 with fixed », = n, = 3. We also use the confidence level
1—20):=0.90. For given independent random samples, the approximate confidence
intervals were consiructed by each method with bootstrap replications B = 2000
times. And the Monte Carlo samplings were repeated 2000 times. The coverage
probability(CP) for all cases and the length(IL) of all intervals are reported in
{Table 1) and {Tablv 2}, respectivelv.

We can summarize the following properties based on an inspection of {Table 1)
and (Table 2).
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(1) For small batch size, the values of coverage probability for the proposed
approximate bootstrap confidence intervals work better than that of the
interval based on Aminzadeh(AMIN)’s method for all R.

(2) As batch size increases, the values of coverage probability for al
approximate intervals converge to true confidence level (1—2«), as a whole.

(3) The values of interval length for all approximate confidence intervais tend to
decrease as R deviates from 0.5. For small batch size, the value of interval
length for the interval based on Aminzadeh’s method is slightly shorter than
those of the intervals based on bootstrap methods, except for large value cf
R.

(4) As a whole, the values of interval length for the approximate intervals base
on all methods converge to true interval length as batch size increase.
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v Table 1 > Results of coverage probability for 1 —20¢=0.9

BATCH R AMIN | Percentile |  BC BCa | Percentile-t
SIZE
0.3 0.8375 0.8690 0.8845 0.8715 0.8760
. 0.5 0.8500 0.8750 0.8950 0.8795 0.8855
0.7 0.8650 0.8960 0.9050 0.8980 0.9030
0.9 0.8860 0.8815 0.9055 0.8965 0.9115
0.3 0.8770 0.8845 0910 | 0.8830 0.8995
; 05 0.8740 0.8960 0.9005 | 0.8900 0.8980
0.7 0.8765 0.8850 0.8935 0.8985 0.8910
0.9 0.8860 0.8890 0.8960 0.8985 0.8980
0.3 0.8900 0.9015 09015 | 0.9010 0.8990
0 0.5 0.8905 0.9025 0.9045 | 0.8995 0.9030
0.7 0.8825 0.8895 0.8930 0.8905 0.8930
0.9 0.9050 0.9005 0.9005 0.9035 0.9075
{ Table 2  Results of interval length for 1 —-2¢=0.9
BATCH R AMIN | Percentile BC BCa | Percentile-
SIZE
0.3 0.3450 0.3733 0.3773 0.3737 0.3885
, 0.5 0.3797 0.4205 0.4221 0.4208 0.4380
07 0.3509 0.3770 0.3809 0.3778 0.3953
0.9 0.2324 0.2166 0.2270 0.2213 0.2453
03 0.2866 0.2956 0.2972 0.2957 0.3061
5 0.5 0.3127 0.3306 0.3313 0.3310 0.3385
0.7 0.2865 0.2965 0.2982 0.2968 0.3059
09 0.1804 0.1708 0.1749 0.1723 0.1857
0.3 0.2107 0.2130 0.2136 0.2131 0.2174
0 0.5 0.2300 0.2366 0.2369 0.2369 0.2387
(.7 0.2089 0.2127 0.:134 0.2129 0.2154
0.9 0.1256 0.1225 0.1240 0.1230 0.1272






