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Abstract

We consider the empirical Bayes confidence intervals that attain a 
specified level of EB coverage for the scale parameter in the Burr 
distribution under type II censoring data. Also, we compare the coverage 
probabilities and the expected confidence interval lengths for these 
confidence intervals through simulation study. 
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1. Introduction

The Burr distribution has been widely used as a model for lifetime. If the 

parameters are appropriately chosen, the Burr distribution covers a large portion of 

the Pearson family. Also, the Weibull and exponential distributions are special 

limiting cases of the Burr distribution.

Empirical Bayes(EB) methods have become increasingly popular and have been 

applied to many types of problems (refer Robbins(1955), James and Stein(1961),  

Miller(1989),  Nandram and Sedransk(1993), Pensky(1998), Ferry and Lahiri(1999)). 
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Morris(1983) reviewed some parametric EB procedures, their properties, and their 

applications. Casella(1985) provided a readable introduction to EB idea. Parametric 

EB methods of point estimation was  introduced by James and Stein(1961). Also, 

a confidence interval estimation through parametric EB methods was summarized 

by Laird and Louis(1987). 

In many applications, EB confidence intervals are required, but computing them 

from the posterior based on an estimated prior (the native approach) is generally 

inappropriate. Since these posterior distributions fail to account for the uncertainty 

in estimating the prior, they may be have inappropriate shapes.

Several approaches have been proposed for incorporating this uncertainty. Morris 

obtained an approximate EB confidence interval for the uncertainty in the equal 

variance and the unequal variance cases, respectively. Laird and Louis used 

bootstrap methods for estimating the prior and posterior distributions and obtained 

EB confidence intervals based on the parametric bootstrap posterior. Carlin and 

Gelfand(1991) showed how bias correction can be implemented generally to a type 

III parametric bootstrap procedure introdeced by Laird and Louis. Nandram and 

Sedransk(1993) developed EB point estimation and confidence intervals for the 

finite population mean and made large sample comparisons with the corresponding 

Bayes estimators and confidence intervals.

In this paper, we consider the methods that construct the bootstrap EB 

confidence intervals of the scale parameter in the Burr distribution under the type 

II censoring data. Also, we compare the bootstrap confidence intervals with the 

native confidence interval in terms of the coverage probabilities and the expected 

confidence interval lengths through simulation study.

2. EB confidence intervals

The Burr(c, k) probability density function(pdf) is

f (x :  c,  k ) = ckx c − 1 (1 + x c )− (k + 1),     x> 0,   (c> 0,   k> 0 ),            (1)

where c  is the shape parameter and k  is the scale parameter.

We assume that c  is known throughout. Also, we consider a squared error loss 

function and a gamma conjugate prior with unknown parameters (b,  a + 1 )  given 

by

g (k|a,  b ) =
b a + 1

Γ(a + 1)
 k a  exp (− bk ),      k > 0,   (a >− 1,    b > 0 ).           (2)

When the parameter has the value km + 1 , a current sample 

xm + 1,1 < xm + 1, 2 <    < xm + 1, r  is obtained. At the time when the current 
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sample is observed, there are available past observations 

xi,1 < xi, 2 <    < xi, r,    i = 1,   ,  m,  with past realizations k1,  k2 ,    , km  of the 

random variable k . Each sample is supposed to be a censored sample of size r  

obtained from a life test without replacement of n  items whose life times have a 

Burr pdf given by equation (1). 

For sample i ,    i = 1,   ,  m,  the maximum likelihood estimator of ki  is

kî =
r
Ti
                                 (3)

where

Ti = Σ
j = 1

r

ln(1 + x c
i, j ) + (n− r ) ln (1 + x c

i,r  ).

The conditional pdf of Xi  for a given ki  is

f (xi |ki ) =
(rki )

r 

Γ(r) x r + 1
 i                      

  exp (−
rki

xi
),     xi > 0                 (4)

wihch is the inverted gamma pdf IG (r,  rki ) . By equations (2) and (4), the 

marginal pdf of xi  ,    i = 1,   ,  m,  is given by

h (x i ) =
0

∞
f (x i| k i )g (k i;a ,   b ) d k i

=  
a b + 1

B (r,  b + 1)
   

x b
i

(r+ axi )
r+ b + 1

  ,     xi> 0            (5)

and the posterior pdf of ki  is given by

f (ki|Ti ) =
a + T r+ b + 1

i

Γ(r + b + 1 )
  k r+ b

i   exp (− a + Tiki ) ,   ki > 0,   (a >− 1,   b > 0 ).

Lemma 1. (Berger(1985) Let µ f (k )  and σ2
f  (k )  denote the conditional mean and 

variance of X  (i.e. the mean and variance with respect to the density f (x|k )). 

Let  µm  and σ
2
m  denote the marginal mean and variance of X . Assuming these 

quantities exist, then

µm = E π [ µf (k ) ],

σ2
m =  E π [σ2

f (k ) ] +  E π [( µf (k ) −  µm )2].
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Using Lemma 1, we have for all i  

µm =  
r

r− 1
  
b + 1

a
                          (6)

and

σ2
m =  

r 2

(r− 1 )2 
  [

1
r− 2

(b + 1 )(b + 2 )

a 2
  +  

(b + 1 )(b + 2 )

a 2 
     −

(b + 1 )2

a 2
 ].      (7)

Since µm  and σ
2
m  are the marginal mean and variance for Xi,     i = 1,  2,  ,  m,  

they can be estimated from the data. 

Let 

µm̂  =  
Σ
i = 1

m

Xi 

m
 

and

σ2
m
ˆ  =  

Σ
i = 1

m

X 2
i

m
 −  µm̂ 2 .

We can solve for a  and b  from equations (6) and (7) with µm̂  and σ
2
m
ˆ  for µm  

and σ2
m , respectively. If we put

S1  =  
r

r− 1
  µm̂

and

S2 =
(r− 1 )(r− 2 )

mr 2
  Σ
i = 1

m

X 2
i  = S 2

1 +
S1

â
,

we obtain

â =  
b̂ + 1

S1
                                   (8)

and

b̂ =
S 2

1

S2 − S 2
1

 − 1.                                (9)

Therefore, the moment estimators of a  and b  are obtained by

 bM̂ =  max [
S 2

1

S2 − S 2
1  

 − 1,  − 1 ]                          (10)

and

aM̂ =  max [
b̂ + 1

S1
 ,  0 ]                             (11)

respectively.
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We will construct the native EB and some bootstrapping EB confidence intervals 

of the scale parameter in the Burr distribution under type II censoring data.

Let the prior parameter ∆̂ =  (aM̂  ,  bM ̂ )  be a moment estimator of ∆ =  (a,  b )  

computed from the marginal distribution of Xi.

Then the estimated posterior distribution of Ki  given Xi = xi  is IG (r,  rxi ) ,

that is, 

f (ki|xi,  aM  ̂,  bM ̂ ) =
(rxi )

r 

Γ(r) k r+ 1
i

  e xp (−
rxi

ki
),     ki> 0 .             (12)

Therefore, the equal tail 100(1-α)% two-sided native EB confidence 

interval(NEBCI) for ki  based on the estimated posterior f (ki|xi,  aM  ̂,  bM ̂ )  is given 

by

(
F− 1

2(r+ b̂ + 1 )
(α )

2 (â + Ti )  
 ,  

F− 1
2(r+ b̂ + 1

(1 −α )

2 (â + Ti )
)                    (13)

where Fk  denotes the cumulative distribution function(CDF) of the chi-square 

distribution with k  degrees of freedom.

Let us investigate the bootstrapping EB confidence intervals. To implement the 

bias correction we note that

r(∆̂,  ∆,  Ti,  a ) ≡  P [ki  qα(Ti,  ∆̂ )|ki ∼  f (ki|Ti,  ∆ )]

= F2(ri + b + 1) (
a + Ti

aM̂ + Ti 
 F− 1

2(bM̂ + ri + 1)
(α ) )           (14)

where F  is the posterior CDF and 

R(∆,  Ti,  α ) ≡   E
∆̂| Ti, ∆

 [r(∆̂,  ∆,  Ti,  α)].                  (15)

Computing R (∆,  Ti,  α )  necessitates the integration over the distribution 

g(∆̂|Ti,  ∆). Using the type III parametric bootstrap procedure, R (∆,  Ti,  α )  is 

obtained as follows.

For the unconditional EB correction, the type III parametric bootstrap estimate of 

R (∆,  Ti,  α (1) )  becomes

1
N

  Σ
j = 1

N

F
2(ri + b̂ + 1)

[
â + Ti

a * + Ti

F− 1
2(b * + ri + 1) (α

 
(1) )] = α              (16)
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which we equate to α  and solve for α(1) . The 100(1-α)% unconditional 

bias-corrected(I) NEBCI for ki  is given by

(
F− 1

2(r+ b̂ + 1 )
(α(1) )

2 (â + Ti )  
 ,  

F− 1
2(r+ b̂ + 1

(1 −α(1) )

2 (â + Ti )
) .                 (17)

We correct bias for each ki  confidence interval, but the correction in each case 

depends on the data through ∆̂.  If we desire the confidence interval corrected 

only for the unconditional EB coverage, the bootstrap equation becomes 

1
N

  Σ
j = 1

N

F
2(ri + b̂ + 1)

[
â + T *

ij

a * + T *
ij

F− 1
2(b * + ri + 1) (α

 
(2) )] = α              (18)

which we equate to α  and solve for α(2) .

Equation (18) differs from equation (16) only in replacing the given value Ti  by 

the bootstrapped value T *
ij . 

Analogous to expression (17), the 100(1-α)% unconditional bias-corrected(II) 

NEBCI for ki  is given by

(
F− 1

2(r+ b̂ + 1 )
(α(2) )

2 (â + Ti )  
 ,  

F− 1
2(r+ b̂ + 1

(1 −α(2) )

2 (â + Ti )
) .                 (19)

3. Comparisons and Conclusions

We compare all the methods discussed. The EB confidence intervals are 

approximated by Monte Carlo method. In each iteration, we generate 

ki,   i = 1,  ,  m(= 10 )  from subroutin Burr as a gamma distribution G (a,  b )  with 

a  and b  fixed. Given the kis, we generate the lifetime 

xij ,   j = 1,   ,  n(= 5,  10,  20 )  from subroutin Burr as the Burr distribution with a 

scale parameter ki  and a fixed shape parameter c = 2.  The random variables xij  

are distributed as equation (1). We order the variables xi, 1 < xi, 2 <   < xi, r,  

and compute Ti = Σ
j = 1

r

ln(1 + x c
i, j ) + (n− r ) ln (1 + x c

i,r  ).  We assume ri = r  for all 

i.  Let us consider the censoring rate defined by 100 (1 − r/n)% of 0% and 20%. 

For the given independent random variables EB confidence intervals are computed 
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by each method with bootstrap replications B = 1000  times. Also, Monte Carlo 

sampling are repeated R = 500  times. The EB confidence intervals are compared 

in terms of the coverage probability and the expected confidence interval lengths. 

Let CVk  denote the coverage probability for k . If CVk  for the EB confidence 

interval is nearly 1 − α , then the confidence interval is good. We consider the 

nominal coverage probability of 0.90. Let klô  and kup̂  to be the lower limit and 

upper limit of the EB confidence interval for k , respectively. Define the expected 

confidence interval length ELk  by

ELk =
1
R

  Σ
j = 1

R

(kj,up̂ − kj, lô )

where R  is the number of Monte Carlo replications. Then the smaller ELk  is the 

better under the same CVk . The results of these simulations are presented in 

Table 1. We can observe the followings from the table;

(1) The CVks of the bootstrap confidence intervals obtained from the marginal 

estimator are better than those of the naive confidence intervals.

(2) The ELks of the bootstrap confidence intervals obtained from the marginal 

estimator are longer than those of the naive confidence intervals. 

(3) The CVks of all the confidence intervals increase as the sample size increases.

Table 1. Comparisons of Naive and Bootstrap EB Confidence Intervals

Censoring rate= 0%

Interval methods
n=5

Coverage   Length

n=10

Coverage   Length

n=20

Coverage   Length

Naive

Bias-corrected(I)

Bias-corrected(II)

0.716      1.096

0.758      1.301

0.764      1.535

0.812       0.792

0.830       0.808

0.826       1.328

0.876       0.552

0.882       0.555

0.882       0.894

Censoring rate= 20%

Interval methods
n=5

Coverage   Length

n=10

Coverage   Length

n=20

Coverage   Length

Naive

Bias-corrected(I)

Bias-corrected(II)

0.712      1.318

0.696      1.735

0.730      1.611

0.768       0.878

0.778       0.926

0.784       1.081

0.850       0.625

0.844       0.633

0.856       0.803
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