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ABSTRACT

Simultaneous confidence intervals for the parameters in the logistic regres-
sion models with random regressors are considered. A method based on the
bootstrap and its stochastic approximation will be developed. A key idea in
using the bootstrap method to construct simultaneous confidence intervals is
the concept of prepivoting which uses the transformation of a root by its es-
timated cumulative distribution function. Repeated use of prepivoting makes
the overall coverage probability asymptotically correct and the coverage prob-
abilities of the individual confidence statements asymptotically equal. This
method is compared with ordinary asymptotic methods based on Scheffe’s
and Bonferroni’s through Monte Carlo simulation.

1. INTRODUCTION

Simultaneous confidence intervals for the linear combinations u*3 are constructed,
where u is a p-dimensional vector of parameters in the logistic regression model. The
model will be described briefly in the next section. A resampling approach described
in this paper generates simultaneous confidence intervals which possess the following
two properties:

(i) the overall coverage probability is asymptotically correct;
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(i1) the coverage probabilities of the individual confidence statements which define
the simultaneous confidence intervals are asymptotically equal.

Property (ii) is termed asymptotic balance. It means that the simultaneous
confidence intervals treat each constituent confidence statement fairly. An example
of balanced simultaneous confidence intervals is Scheffe’s method for the parame-
ters in the context of normal linear models, see for example, Miller(1981). For the
present paper, notations and theorems from Beran(1988) will be used. The index
set U in our case contains a finite number of elements, which includes the important
cases such as individual components of the vector 3, Scheffe’s simultaneous confi-
dence intervals for linear contrasts, and Tukey’s simultaneous confidence intervals
for pairwise contrasts.

In section 2, the model to be discussed is described and some asymptotic prop-
erties of the maximum likelihood estimator for the parameter 3 are summarized.
In section 3, a method of constructing balanced simultaneous confidence intervals
will be explained briefly, then in the last section a Monte Carlo study is provided to
compare this method with some other classical approaches.

2. MODEL AND MLE

Suppose we have n independent and identically distributed random vectors (Y;, X;?)
for 1 = 1,2,---,n such that the covariates X;s are p-variate random vectors with
unknown distribution function G(z). Assume that the third moment of X; ex-
ists. Given X = z, the random response Y takes value 1 with probability p =
1/[1 + exp(—2z'f)], and take value 0 with probability 1 — p.

In the sequel, B, denotes the true but unknown parameter of the probability
model which is supposed to generate our sample, and 3 is any parameter in the
p-dimensional Euclidean space B such that X*J lies in the real line with probabil-
ity 1. The following gives a summary of the probability model to be considered
and the estimators to be used in this paper. For a more detailed account of the
binary response models including the logistic regression models, see McCullagh and
Nelder(1990).

Log-likelihood for a single observation is given by

I(3,G;y,x) = yz' — log[l + exp(z!3)] + constants. (2.1)

Easily, using the chain rule, it can be shown that the first derivative and the second
derivative of [ with respect to g are given by
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Vi = z(y — p), and (2.2)

V2l = —zz'p(1 — p), respectively. (2.3)
So the information matrix with respect to 3 is given by

1(B) = E[XX*p(1 - p)), (2.4)

which can be consistently estimated by

SI'—‘

Z Xt‘z ﬁi)v (25)
=1

where p; = 1/[1 +exp(—X; ,Bn)] and 3, is the maximum likelihoood estimator of Bo.
We have the usual asymptotic results such as strong consistency, and asymptotic
normality of the maximum likelihood estimator of 3;. McCullagh and Nelder(1983)
gives an iterative algorithm to obtain such a solution. For a more detailed account
of asymptotic results in more general set up, see Fahrmeir and Kaufmann (1985).
Section 2 of Lee(1990) gives a more detailed account of the probability model, the
resampling algorithm and the asymptotic validity of bootstrap approximation.

3. CONSTRUCTION OF BALANCED SIMULTANEOUS
CONFIDENCE INTERVALS

Let Tr be the set of all possible values of u'3 as 3 ranges over the parameter set
B. Approximate confidence intervals for u'!8 may be obtained by referring a func-
tion of u‘# and of the sample to an estimated quantile of that function’s sampling
distribution. This function is called the root of the confidence intervals, and will
be denoted by R, ,. Either asymptotic theory or bootstrap methods can be used
to estimate the quantile. Beran(1987) suggests that studentizing reduces level error
in general. He also suggests that, when the asymptotic distribution of the roots
{R,.} are identical; and when the asymptotic distribution of supR, , is continuous

u
and does not depend on the unknown parameter, say 6, asymptotically, the simulta-
neous confidence intervals are balanced and has overall coverage probability 1 — a.
Therefore as a root
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R = [n!2ut(B, = B)|/ (w7 u)!/? (3.1)
will be used for confidence intervals of the form;
u' B, + dp G [0?, (3.2)

where 6,,, = (ut]~'u)"? and d,, is the critical value determined from the sample.

The following triangular array argument will be needed in the construction of the
balanced simultaneous confidence intervals based on bootstrap. Refer to Lee(1990)
for the sketch of the proof.

Triangular Array Convergence

Let p denote Prohorov metric on G, the space of the cumulative distribution
function of the covariates G( - ). Huber(1981, chapter 2) gives a detailed account of
various metrics which metrize probability measures. Define the following distance
on © =B x G;if 8, = (81,G1),02 = (B2,G2), where 34, 32 belong to B, and G,, G

belong to G, then for some metric || - || on the space of positive definite matrices,

d(0y,02) = p(G1,G2) + |5y — Ba| + || 1(B1) — 1(B)]-

Let 8, = (B.,Gr) be a sequence of parameters such that the distance d(9,,0)
tends to 0 as n tends to co. Throughout, £( - |P) denotes the probability law of a
random variable under probability measure P. P, denotes the probability measure
when the parameters in our model are given by 6, = (3,,G,). Then

L(R,.|P.) — | Z | in distribution , (TAC)

where Z is a standard normal random variable.

By simultaneously asserting the above confidence intervals, we obtain simul-
taneous confidence intervals for the family of parametric functions of the form,
{u'B;u € U}. More fully, let T denote the set of all possible values of {u*3;u € U}
as (3 ranges over B. Every point in this range can be written in a component form
{u'B;u € U}, where u'8 € T,. In this notation, the simultaneous confidence inter-
vals described above can be written as

utf, + dn'uan,u/nl/z for all u e Y. (3.3)

The critical value d,, , is determined from the sample in a manner to be specified
below.
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Remark. Potentially we are interested in the construction of a confidence band
for the probability of success, E(Y|z), which is given by 1/[1 + exp(—z'$)]. This
can be done by a delta method, and will not be explored in the present paper.

Construction of Balanced Simultaneous Confidence Intervals

The following describes an algorithm to construct balanced simultaneous confi-
dence intervals based on bootstrap method.

(1) Let H,,(-,0) be the left continuous cumulative distribution function of the
root R, ,,and H,( - ,0) be the left continuous cumulative distribution function
of the transformed root sup{H, ,(Rn.,0)}.

( 1i) Natural, plug-in estimates of H,, and H, are, respectively,

~ ~

Hn,u = Hn,u( : ’0)7 and I;[n = Hn( ' 7é)’ where én = (:ané'ﬂ)1 (34)

a consistent estimator of #. The maximum likelihood estimator and the em-
pirical cumulative distribution function from the covariates will be used, that
is, the above estimators are bootstrap versions of H, , and H,, respectively.

(iii) Find the largest t-th quantiles of H, , and H,. That is, let
fl,ff‘(t) = sup{z : H, ,(z) (3.5)

ff;l(t) = sup{z: H.(z) < t}. (3.6)

(iv) Then a bootstrap version of the simultaneous confidence intervals is given by

utf, + dpubnu/n? for all u € U, (3.7)

where d,,, = H7L[H;Y(1 - a)).

Remark. It should be pointed out here that (3.4) implies the bootstrap samples
are drawn from the Bernoulli distribution in a parametric way as described in sec-
tion 2 of Lee(1990). If you draw the pairs with replacement, then you are dealing
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with a different probability model as explained in section 3 of Lee(1990).

The calculation of d, , involves two steps;
(a) Find the largest (1 — a)-th quantile of H, and call it c,.
(b) Find the largest ¢,-th quantile of H, , for all u € U.

This is the critical value in (3.7). For a motivation of such a critical value, see
Beran(1990). The above simultaneous confidence intervals can be rewritten as fol-
lows;

{ : ;Hn[Sllpﬁn,u{Rn,u( ’ )}] <l- a}' (38)

The key idea visible in the above representation is the concept of prepivoting,
first introduced in Beran(1987), which means the transformation of a root by its esti-
mated cumulative distribution function. Prepivoting takes R,, , into [Afn,u{Rn,u( )},
whose asymptotic distribution is usually uniform on the interval (0, 1) for every
choice of u. This property ensures the asymptotic balance of the simultaneous
confidence intervals given above. Prepivoting also takes supH, ,{R..( - )} into

u

[:In[supHn,u{Rn'u( - )}], whose asymptotic distribution is again typically uniform on

the interval (0, 1). This property ensures that the asymptotic coverage probability
of the simultaneous confidence intervals described above is 1 — a.

The following is an easy consequence of Theorem 4.1 in Beran(1988). We just
have to check the Assumptions I ~ 4 therein, so the details will be omitted.

Theorem 3.1. Suppose a € (0,1), and T}Lnoloﬂn = 6. Then
lim Po(u'fn € u'fy & dnpbnu/n'/? foralluell) =1-a  (3.9)
and

711211 sup|P,(u'f3, € u'B, + dp /2 — H Y1 —a)| =0, (3.10)
where H™'(1 — «) is the (1 — a)-th quantile of the cumulative distribution function
of a random variable sup W (Ju!W|/(u* 171 (3)u)/?) with W distributed according to

a p-variate normal distribution having 0-mean vector and I71(/3,) as its covariance
matrix, and ¥( - ) is the folded standard normal distribution function, i.e., the dis-
tribution function of | Z | when Z is a standard normal random variable. Moreover,

~

H-'(1 — «) tends in P, probability to H~1(1 — a).
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For example, when U is a subspace of dimension g, the second statement of the
theorem reduces to

Tim sup| Pa(u!B, € u'By & dnudnu/n'/?) = WG A(1 - )] =0, (3.11)
where (,(1 — @) is the (1 — a)-th quantile of x*- distribution with ¢ degrees of
freedom. Moreover H:1(1 — a) tends in P, probability to H~1(1 — a), where H( - )
is the cumulative distribution function of x?*-distribution with ¢ degrees of freedom.

For practical purposes, a stochastic approximation to the simultaneous confi-
dence intervals suggested above is available, which makes this idea widely applicable.

Stochastic Approximation to (3.7)

(i) Given the original data Z, = {(Yi, Xi");¢ = 1,---,n}, draw B, conditionally
independent bootstrap samples Z |,---, Z g ), each of size n, from the fitted

model P,.
( i1) For every u in U, form IZI;,M, the left continuous cumulative distribution func-
tion of the bootstrapped roots {R ,, = Rnu( ;,j,én) .1 €5 < B,}.

Glivenko- Cantelli theorem tells us that this cumulative distribution function
approximates H,,. A detailed account of Glivenko-Cantelli theorem can be
found in, for example, Billingsley(1979).

(ii1) For every value of j, let

Snj = supr;‘u( * ) =sup[rank(R: ;) — 1], (3.12)

n,u,j n,u,j

the rank being calculated among the B, possible values of its argument.

( tv) Form I:I,'l‘, the left continuous cumulative distribution function of the values
compute in (iii), {sn; : 1 < j < B,}. This cumulative distribution function
approximates H, by Glivenko-Cantelli theorem.

( v ) Find ¢, the largest (1 — a)-th quantile of .
( vi) Find d;

n,u’

the largest c-th quantile of H:

n > Which approximates dn .

(vii) Define the simultaneous confidence intervals by analogy with the previous ones
as follows;

u'Bn £ df a0, (3.13)
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Let @, denote the joint distribution of (Z,,Z;,,---,Z} 5 ) when Z, has the
distribution P,. Formally

Qn(A) = [, PP~(dz")P,(dz) (3.14)
for every measurable subset A in the range of (Z,,,Z;; ;,---,Z} ). Note that z* can
be written as

2" =(2f,---,28,), (3.15)

where z;* takes values in R**! x R™ Euclidean space.
The following theorem states that the stochastic approximation version just de-

scribed gives similar results to Theorem 3.1. It is also an easy consequence of
Theorem 4.2 in Beran(1988).

Theorem 3.2. Besides the assumptions in Theorem 3.1, suppose that B, tends
to oo as n increases. Then for the stochastic approximation versions of the simul-
taneous confidence intervals given by (3.13), the same results as those in Theorem
3.1 also hold with respect to Q),, probability.

4. SIMULATION

A Monte Carlo study is provided to compare the ordinary asymptotic methods
with the bootstrap in terms of coverage probabilities of simultaneous confidence
intervals. Note that the ordinary Edgeworth expansion argument is not available in
this logistic regression model due to the lattice structure of the response Y;’s, see for
example, Feller(1971, p.539). Usually an analytic comparison of confidence intervals
is based on the Edgeworth type expansions. See, for example, Hall(1986a, 1988),
Beran(1987), etc. for this line of argument. Therefore it is an interesting situation
to compare the conventional methods with bootstrap methods when the expansion
argument is not available.

In this study, the number of parameters are 2, so our model is given by
log pi/(1 = pi) = fo 1 Bz, (4.1)
where Y;|X; = x; has a Bernoulli distribution with parameter pi. Simultaneous

confidence intervals for the components 5y and 8, will be constructed. Since only
two statements are concerned simultaneously, the most popular conventional method
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can be that of Bonferroni’s. Also, Scheffe’s method is another possible candidate,
which is supposedly very conservative.

Uniform distribution over the interval (0, 1) is taken as the distribution of X,
which will be standardized during the simulation. To find the maximum likelihood
estimators, the algorithm given in McCullagh and Nelder(1990) is used with sub-
routines ssifa and ssisl in linpack library to solve the simultaneous equation. To
generate uniform random numbers g05caf function in NAG mathematical library is
used.

To compute coverage probabilities in the ordinary asymptotics, it can be easily
checked that; the critical values are given by 1.960394 (a = 0.1), and 2.241845

(a = 0.05) for Bonferroni’s method, and they are given by C;/z(.QO) = 2.145966, and

23/2(.95) = 2.447747 for Bonferroni’s method. The functions gnorm , and gchisq in
S are used to calculate these values.

The stochastic approximation algorithm described in section 3 is used for the
computation of the bootstrap coverage probabilities, since no closed form expression
of fln,u is available. The number of bootstrap replications, B,, are set at both 99
and 1,000. See Hall(1986b) for the use of the number of replications 99. Smaller
numbers of replications like 19 do not seem to give correct coverage probabilities.
Due to frequent occurrences of singular covariance matrices, sample sizes n are set
at 100, 200, and 400. For sorting and ranking, m0!ajf and m0Ianf functions in nag
mathematical library are used with a little modification.

In each case, the number of replications are set at 1000, so the standard errors
attached to each simulated coverage probabilities are around (0.9 X 0.1/1000)'/? =~
0.01 or so. Throughout Cg,.s denotes asymptotic methods based on Bonferroni’s,
Csehesse denotes asymptotic methods based on Scheffe’s, and Cp,, and CB,q, de-
note bootstrap methods with the number of bootstrap resampling 99 and 1000,
respectively.

Table 1 compares critical values obtained by each method. As previously ex-
plained, the critical values for Cpons and Cschesre are found from the standard
tables, and the critical values for Cp,, and Cap,q,, are calculated by averaging the
critical values obtained at each replication, which uses the stochastic approximation
algorithm described in section 3. As we have already expected, Bonferroni method
gives smaller critical values than Scheffe’s. The bootstrap methods give critical val-
ues which vary from case to case. For bootstrap methods with resampling size 99,
the standard errors attached to the estimated critical values are ranging from 0.17

to 0.4, while the standard errors with resampling size 1000 are ranging from 0.05 to
0.27.

Table 2 compares the estimated coverage probabilities. Each method should be
compared in terms of both overall coverage probability and balancedness. Scheffe’s
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method gives very conservative confidence intervals as expected, since this method
is intended for the simultaneous intervals for all the linear combinations. In case
of normal error linear regression models, which can be regarded as the case when
n = oo with known error variance, we expect the marginal coverage probabilities for
Schefte’s method to be .968124 and .985624 when o = 0.10 and a = 0.05 respectively,
and we can check this out from a couple of cases in the table. Note the excellent
performance of Bonferroni method when the number of statements is small (in this
case, 2). In case of normal error linear models, we expect that the overall coverage
probabilities would be at least 0.90 and 0.95 for @ = 0.10 and o = 0.05, respectively,
and we can see that the errors in coverage probabilities are relatively small.

Table 3 summarizes errors for each method in overall coverage probabilities.
Both Cp,, and Cpg,y, give reasonably good coverage probabilities. Unfortunately,
the rate of bias reduction is not detectable in this study.

To compare balancedness, Imbalance of each method is computed for each case,
which in this case is just an absolute value of difference in each marginal probabilities.
See Beran(1990) for this new terminology. Table 4 summarizes Imbalance of each
methods. Cg,, and Cp,,,, give more stable Imbalance than the other two in that
in two cases out of six, Cschesse and Crons give Imbalance of more than 0.02 while
the other two methods do not. But it is not so clear to see which one is the best
method in terms of Imbalance.
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Tables

Table 1: Critical Values

l-«a 90 .95
n 100 200 400 100 200 400
Coschesse | 2.1460 2.1460 2.1460 | 2.4477 2.4477 2.4477
CBonf 1.9604 1.9604 1.9604 | 2.2418 2.2418 2.2413
Che | Bo | 1.8875 1.9380 1.9493 | 2.1522 2.2088 2.1350
By | 2.1937 2.1407 2.1074 | 2.5274 2.4503 2.4069
Chiom | Bo | 1.8726 1.8991 1.9229 | 2.1352 2.1668 2.2011
B, 121658 2.1015 2.0910 { 2.5114 2.4135 2.4000
Table 2: Estimated Coverage Probabilities
-« 90 .95

n 100 200 400 | 100 200 400

Bo |.977 957 .967 | 994 .981 .984

Csehesse | P |-950 967 .954 | .971 .981 .979

Bo, By | 929 926 .925 | .966 .963 964

B, |.951 .945 .949 | .987 .974 972

CBonf B, |.930 .950 .932|.962 .971 .961

Bo, 1 | .886 .898 .888 | .950 .947 .938

Bo |.936 .946 .955 | .966 .975 .979

CBa By | .951 .950 .955|.980 .974 .973

Bo, By | 895 .900 .915 | .947 .952 .953

Bo |.941 .939 .953 | .966 .975 .980

CB1ooo By |.951 .950 .939 | .980 .974 .966

Bo, B | 898 896 .899 | .955 .944 .950
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Table 3: Errors in Overall Coverage Probabilities

1—-a 90 .95
n 100 200 400 | 100 200 400
Cschesse | -029 026 .025 | .016 .013 .014
CBons |-014 .002 .012|.000 .003 .012
CBye .005 .000 .015|.003 .002 .003
CBiose | -002 .004 .001 | .005 .006 .000

Table 4: Imbalance

1 - o .90 .95
n 100 200 400 | 100 200 400
Csechefe | 027 .010 .013 |{.023 .000 .005
CBons | -021 .005 .003 |.025 .003 .011
CBso .017 .004 .000 | .014 .001 .006
Chiwe | 010 011 .014 | 014 .001 .014

151



