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Bootstrap Confidence Bounds for P(X >Y)
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Abstract

In this paper, the stress strength model is assumed for the populatmns of X and
Y, where distributions of X and Y are independent normal with unknown
parameters We construct bootstrap confidence intervals for rehablhty, R=P(X>
Y) and compare the accuracy of the proposed bootstrap confldence mtervals and.
classical confidence interval through Monte Carlo simulation.

1. IntroduCtion

In many applications, the distributions of the stress and the strength are
1ndependent normal with unknown parameters to the investigator. As a specific ;
example, we can consider the rocket-motor experiment data reported by Guttman,
Johnson, Bhattacharyya and Reisser (1988).-Suppose that one is interested in the_fa
reliability of the rocket-motor at the highest operating temperature at which the |
distribution of operating pressure(Y) tends to be closest to the distribution of
chamber burst strength(X).

Church and Harris (1970) and Reisser and Guttman (1986) obtained approximate f
confidence intervals for R in the stress strength model which X and ¥ have’
normal distributions. Guttman, Johnson, Bhattacharyya and Reisser (1988) found’
an . approximate confidence interval for R in stress strength model thh
explanatory variables. Since the true distribution of the estimator for R is often
skewed and biased for a small sample and/or large value of R, the interval based
on the asymptotic normal distribution may deteriorate the accuracy. So we will use-
the bootstrap method to rectify these problems. Efron (1979) initially introduced:
the bootstrap method to assign the accuracy for an estimator. To a construct
approximate confidence interval, Efron (1981, 1982, 1987) and Hall (1988) proposed
the percentile method, the bias correct(BC) method, the bias correct acceleration
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(BCa) method, and the percentile-¢ method, etc..

In this paper, we derive large sample property for the bootstrap estimator of X
and propose approximate bootstrap confidence intervals for K based on percentile,
BC, BCa and percentile-f methods. Also we compare the accuracy of the proposed
bootstrap confidence intervals and the approximate confidence interval based on
Reisser and Guttman (1986)’s method through Monte Carlo simulation. In
particular, we ohserve the accuracy of these intervals for small sample and/or
large value of .

2. Notations and Preliminaries
In this paper the following notations are used.

N(a, b} : normal distribution with mean « and variance b.

X.Y :strength and stress of component having N (u,, ¢2) and N(y,, o),
respectively.

F(x), G(y) : distribution functions(df’s) of strength and stress, respectively.

X =(X,,X,, . X,) :random samples from F(x).

Y=(Y,,Y .- Y,) :random samples from G(»).

X*=(X31, X, -, X3 ): bootstrap samples from sample df’s of X.

Y*=(1.Y? -, Y} ) : bootstrap samples from sample df’s of Y.

XY : sample means for X and Y, respectively.
6., ¢ :sample variances for X and Y, respectively.
@1 - 1 : cdf of the standard normal distribution.

&

Pz )
: bootstrap version of 0 for any bootstrap replication.

y

*

=

Under the stress strength model with independent normal distributions, it is
known that the reliability becomes R = P(X >Y) = @(p), where p =(u, —p, !

v/;f +4°. Reisser and Guttman (1986) obtained the estimator R of R given as

R =0 = 0(X-Y)/Vé +é?) 2.1

where p=(X-Y) /Vzoi—iﬁ-;}’ Also they proved that p has the asymptotic normal
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distribution with mean p and variance ¢?=1/M +p*/2f, where M=(o?+q%)/(s?/
n +olln) and f=(at+6?)?/(6}/(n, —1)+0a!/(n, —1)). The asymptotic variance of
p is estimated by using ¢! and ¢! instead of ¢/ and ¢?, respectively, in the

formulas for M and f.

Hence they show that a 100(1—24)% approximate confidence interval for R is
given by

(@5 +2 - 6,), ®p +247 - 5,)). (2.2)

3. Consistency for Bootstrap Estimator

The bootstrap procedure is a resampling scheme that one attempts to learn the
sampling properties of a statistic by recomputing its value on the basis of a new
sample realized from the original one. The bootstrap procedure for construction of
bootstrap estimator for R provides confidence interval estimates by using the
plug-in principle as follows:

(1) Compute the plug-in estimates of u,, u,, ¢f and ¢’ given by X.Y,
S =n! Zl (X, -X)* and S% =n," }:] (Y, ~Y)* from X and Y, respectively.

(2) Construct the sampling distribution F » and GA?:‘:, (from X and Y¥) based on
X.Y,S? and S.. respectively. That is, F% ~N(X, S?) and G:, ~N({,S).

(3) Generate B random samples of size », and », from fixed F v, and é:z,
respectively. We call the corresponding samples by the bootstrap samples,
and denote X* =(X* X¥, .. X%)and Y*=(¥, Y%, -, Y%). where b=1,
2, . B.

(4) Compute R*=@(;*), where j*=(X*-Y*)/\/S" +S§. We call X*. Y*,
Si*" S*¢ and R*' by bootstrap estimators for u., u,, o¢, o, and R, respectively.

Theorem. For given X and Y, suppose that X* and Y* are the bootstrap

samples of sizes », and #n, from the sample distribution functions F7 and G7,.

respectively. Then the bootstrap estimator R* is a consistent estimator of R.

Proof. For an arbitrary positive €,
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P(IX*-X|>¢/2) < E(X*—X)*/(g/2)
= E[E[(X*-X)"| X 1)/(e/2)
= E(8%)/(n,(e/2)")

=, - 1)o* [ (ni(e/2))— 0, as n,— 0.
Also,

P(IS*S!1>¢€/2) < E(S*82)* (/2
= E[E[(S"=5') | X11/(e/2)
2(n, —1)E(SH) (e /2)")

il

8(m, — D Ve’ /(nie’)— 0, as n~ 0.

Since it is known that X and S! are a consistent estimators for x and s
respectively, X* and S** are a consistent estimators for u. and o., respectively.
Similarly, Y * and S2* are consitent estimators for u. and ¢, respectively. Hence
pr = (XY \ S +S% is a consistent estimator of p. Since @ is continuous
function, R* is a consistent estimator of R.

Note that, under the assumptions of theorem, the asymptotic distribution of R
and R are same.

4. Bootstrap Confidence Intervals for Reliability

In this section we construct approximate bootstrap confidence intervals for R
All confidence intervals are two-sided and equal-tailed with confidence level 10
(1-22)%.

4.1 Percentile method

The confidence interval by the bootstrap percentile method(percentile interval
is obtained by percentiles of the empirical bootstrap distribution of R* Let H* be
the empirical cumulative distribution function of R* Then it is constructed by

~ 1 N
H*s)=B "’ h}: I(R* < s), where s is an arbitrary real value and I{-) is an indicator

function. Let H* '(a) be a 100a empirical percentile of R* given by

H* (@) = infls: H*s) > al. : (4.1
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That is, H*"(a) is the Bath value in the ordered list of the B replications of R**.
If B« is not an integer, we can take the largest integer that less than or equal to
(B +.1)«. Then a 100(1 -2a)% percentile interval for R is approximated by

(H* '(2), H*'(1—a)). (4.2)

4.2 Bias correct method

The BC method adjusts a possible bias in estimating R. The bias correction is
given by

i@ (HYR) =0 [B‘l bi I(I%*bsfe)] : (4.3)

where @ ( - ) indicates the inverse function of the standard normal cumulative
distribution function. That is, Z, is the discrepancy between the medians of R* and

R in normal unit. Therefore, we have a 100(1—-2a)% approximate BC interval for
R given by

(ﬁ*‘l(a; ), H* e, ), (4.4)

where @, =0(23,+2“ ) and a, =®(22, +2"").

4.3 Bias correct acceleration method

The BCa method corrects both the bias and standard error for R. The
confidence interval by BCa method(BCa interval) requires to calculate the bias-
correction constant 2, and the acceleration constant 4. In fact, the bias-correction
constant Z, is the same as that of BC method. And &, measured on a normalized
scale, refers to the rate of change of the standard error of R with respect to the
true reliability R.

For the parametric bootstrap method, all calculations relate only to the sufficient
statistics X, S2, Y and S for u., o¢, u, and ¢?, respectively. Of course, X, S Y
and S! are distributed as N{(y,, o’/n,), (¢2/n)X*(n, —1), N(u,, oi/n,) and (¢} /n,) X*
{m, —1), respectively. Also, X. S%.Y and S are stochastically independent. Let 7'
=(X,S:.Y.S and n' =(u., ¢!, u,, 63). Then the joint probability density function
of 5" can be written as

f, () = fulglexplgly, n) —¥.(g)], (4.5)
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(nl+n3-2‘,/2:|ﬂ . ny /2 ny/2
1 2

where f,(n') =[2r[((n, —1)/2) - T((n, —1)/2)2
&', ) = 2m i, X —n, X' —n,82)/20° +(2n, u, Y—n Y —nS82) 24
+ (12, —3)/2 - log(S%) +(3, —3)/2 - log(S?2),

and
U.(q' = nutl2a: +nloglel)|2 +n,u/20) +n,loglal)]2.

For multiparameter family case, we will find a2 following Stein’s construction
(1956). That is, we replace the multiparameter family 7={f,(Z)} by the least
favorable one parameter family i ={f;r(Z)Efzu@(Z)}, where Z=(X, Y). Then
we first obtain w such that the least favorable direction at =5 is defined to be
w=(0%)" %, where £7 is Fisher information matrix and {7& is the gradient of ,

given by % = :f; I 4. After some algebraic calculation, we have

0 #n, /S 0 0
gy =1 0 0 m/2SH 0
0 0 0 n(2S3) |,
and
st ]
~1N/Si+S;
Vi = | ~(X=-Y)/2St +85)”
| - ®-P)r2st +50 ]

Hence, we have i’ =(W,, W,, W,. W,), where W, =(S%/(n\/S:+S:), W, = —S¢
(/ST +S2), W, = =SHX V)0 (St +(S:V*), and W, =—SHX~Y)/(n, (S~
(52)*). By the method of Efron (1987), & can be obtained as the following

i-Ll. B (46

(\i_,m (0))@/ N
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. YW, (g+Haw) - . .
where ¥V'(0) = (—'-%-;— [,-o. Calculating #7'( - ) and w, we can obtain

T20) = 27 n [ —W2/SE +H{2(W,S2) —4W, W, XS? +2(W, X)*}/S¢]
+ 270 [—W/S +H{2(W, S5 —4AW, W, YS2 +2(W,Y)* /S’ ]

and
T0) = 27 m (—2Wi/SE +A) +27 n,(—2W3/S5 +B).

where A={—6(W,S2):W, +12W, W2 XS? —6W:X'}/S*
and

B = {-6(W.S:'W, +12W, WY S —6W:Y?}/S".
Therefore, we have a 100(1 —-2a)% approximate BCa interval for R by
(O(H* ' (a,)), OH* (), 4.7
where a. =@[ 5, +( 2, +2°) [(1—a( 2, +2“))]
and
a =@ Z,+{Z,+2"")(1—al(Z, +2")N].

4.4 Percentile-¢ method

The confidence interval by the bootstrap percentile-f method (percentile-¢
interval) is constructed by using the bootstrap distribution of an approximately
pivotal quantity for p instead of H* We define an approximate bootstrap pivotal
quantity for p by

/-;*S’I‘UD = ([3*_/3)/6",* , (4.8

where p* and ¢* are the bootstrap versions of p and g,, respectively. We compute
the empirical distribution function H*sryp of p*srun by

ﬁ“ﬂ]‘l)[»(s) = B! :Z:] I(ﬁ*bST‘UD < s), (4.9]
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for all 5. Let H** s:p denote 100a empirical percentile of p*srun, computed by
f{* L sron (a) = inf{s: ﬁ*ﬂ STLD (s) = (a)}. (4.10

Here, H *“Lip la) is the Bath value in the ordered list of the B replications of
p*smp . Then we have a 100(1 —24)% approximate percentile-# interval for R by

(m(ﬁ +(};) ) IA{*AlSTl’D(Q))s ¢([; +6'p * I;I*;ISTUD (1_61'))) (41D

5. Comparisons and Conclusions

To compare the approximate bootstrap confidence interval estimates with the
confidence interval estimate based on asymptotic normal distribution, the coverage
probabilities and the interval length for these intervals are computed by Monte
Carlo simulation. We consider that the true reliabilities of R are 0.3, 0.5, 0.7 and (.
9, sample sizes n, +#», are 5, 10. 20 and 50, and the confidence level (1 —2a) is 0.90
For given independent random samples the approximate confidence intervals ars
constructed by each method with bootstrap replications B =1000 times.

Through Tables 1 and 2, one can observe the following facts :

(1) From the viewpoint of coverage probabilities, the bias correction, bias
correct acceleration, and percentile-f intervals work better than Reisser and
Guttman's | RG) interval, but the percentile interval is not.

(2) The interval length for all approximate confidence intervals tend to decrease
as R deviates from 0.5. As a whole, the value of RG interval length become
shorter than those of the bootstrap interval lengths.

(3) The coverage probabilities for all approximate intervals converge to true
confidence level, 11—2a). And the differences of all interval lengths tend to
be reduced.
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( Table 1) Coverage Probabilities for Confidence Level 0.90

e T
| SAMPLE
N K ! RG Percentile BC BCa Percentile-#
SIZE j
U WO e RE— ,,’ S— o S
0.3 . 8520 .7300 9140 .9000 9200
5 0.5 .8500 .7600 .9060 .8920 .8840
7 \ .8600 7160 .9200 .8900 .8900
‘L 09 ' .8500 6200 8600 8560 9260
ﬁ 0.3 : .8680 8220 9180 9020 9220
| 10 ! 0.5 .8740 .8360 .9380 .9140 19080
} ’ | 0.7 | .8540 .7900 9060 .8900 .9000
| Loo0m 8700 7420 9060 8960 9240
‘ ) 0.3 . .8600 .8300 .8860 8720 9040
; 20 0.5 .8720 .8560 .8980 .8860 .8980
0. l .8820 8340 9060 .8920 .9160
J 0.4 | .8780 7760 .8880 .8840 9120
E o0 ' 8800 8840 9100 9080 8960
[ 50 0.5 .8820 .8720 .9040 .9000 .9040
\ 0.7 8880 8620 9000 .9000 .9040
0.9 [‘ .8840 .8740 .8920 .8940 .9020 ‘
( Table 2 ) Interval Lengths for Confidence Level 0.90
1 SAMI?’Ij];I T (e
I K W RG Percentile BC BCa Percentile-#|
SIZE |
0.3 l 5463 5527 7062 6691 5845
5 0.5 .5844 .6611 7757 7491 .6239
) 0.7 \ 5437 .5535 7189 .6866 .5803
0.9 ! .3794 .2402 .4451 .4057 .4161
0.3 ' 4577 .4859 5372 .5254 4991
0 : 0.5 L4996 .5690 6026 .5950 .5424
“ i 0.7 4523 4781 .5363 5245 4937
0.9 \ .2989 .2406 3337 3177 .3380
- e e, et . U O U S |
03 ‘ 3439 .3590 3732 .3696 3647
2 05 } .3821 4165 4216 4201 .4039
“ 0.7 ! 3420 3572 3730 3695 3621
0.9 ‘ .2028 1790 2128 2079 .2206
0.3 | .2555 .2623 2667 .2658 .2634
i 50 05 I .2815 .2943 .2960 .2959 .2896
‘ ) 07 i 2519 .2583 2631 .2618 .2595
09 i 1530 1447 .1568 .1549 .1602
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