• Title/Summary/Keyword: Conductivity performance

Search Result 1,227, Processing Time 0.029 seconds

Evaluation of a Thermal Conductivity Prediction Model for Compacted Clay Based on a Machine Learning Method (기계학습법을 통한 압축 벤토나이트의 열전도도 추정 모델 평가)

  • Yoon, Seok;Bang, Hyun-Tae;Kim, Geon-Young;Jeon, Haemin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.2
    • /
    • pp.123-131
    • /
    • 2021
  • The buffer is a key component of an engineered barrier system that safeguards the disposal of high-level radioactive waste. Buffers are located between disposal canisters and host rock, and they can restrain the release of radionuclides and protect canisters from the inflow of ground water. Since considerable heat is released from a disposal canister to the surrounding buffer, the thermal conductivity of the buffer is a very important parameter in the entire disposal safety. For this reason, a lot of research has been conducted on thermal conductivity prediction models that consider various factors. In this study, the thermal conductivity of a buffer is estimated using the machine learning methods of: linear regression, decision tree, support vector machine (SVM), ensemble, Gaussian process regression (GPR), neural network, deep belief network, and genetic programming. In the results, the machine learning methods such as ensemble, genetic programming, SVM with cubic parameter, and GPR showed better performance compared with the regression model, with the ensemble with XGBoost and Gaussian process regression models showing best performance.

Hydraulic conductivity of cemented sand from experiments and 3D Image based numerical analysis

  • Subramanian, Sathya;Zhang, Yi;Vinoth, Ganapathiraman;Moon, Juhyuk;Ku, Taeseo
    • Geomechanics and Engineering
    • /
    • v.21 no.5
    • /
    • pp.423-432
    • /
    • 2020
  • Hydraulic conductivity is one of the engineering properties of soil. This study focusses on the influence of cement content on the hydraulic conductivity of cemented sand, which is investigated based on the results from numerical analysis and laboratory testing. For numerical analysis the cemented samples were scanned using X-ray Computed Tomography (CT) while laboratory testing was carried out using a triaxial setup. Numerical analysis enables us to simulate flow through the sample and provides insight to the microstructure. It quantifies the pore volume, proportion of interconnected voids and pore size distribution in both cemented and uncemented samples, which could be computed only through empirical equations in case of laboratory testing. With reduction in global voids, the interconnecting voids within the samples also reduce with cement content. Gamma cumulative distribution function is used to predict the percentage of voids lesser than a given pore volume. Finally, the results obtained from both numerical analysis and laboratory testing are compared.

Nitrogen and Fluorine Co-doped Activated Carbon for Supercapacitors

  • Kim, Juyeon;Chun, Jinyoung;Kim, Sang-Gil;Ahn, Hyojun;Roh, Kwang Chul
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.338-343
    • /
    • 2017
  • Activated carbon has lower electrical conductivity and reliability than other carbonaceous materials because of the oxygen functional groups that form during the activation process. This problem can be overcome by doping the material with heteroatoms to reduce the number of oxygen functional groups. In the present study, N, F co-doped activated carbon (AC-NF) was successfully prepared by a microwave-assisted hydrothermal method, utilizing commercial activated carbon (AC-R) as the precursor and ammonium tetrafluoroborate as the single source for the co-doping of N and F. AC-NF showed improved electrical conductivity ($3.8\;S\;cm^{-1}$) with N and F contents of 0.6 and 0.1 at%, respectively. The introduction of N and F improved the performance of the pertinent supercapacitor: AC-NF exhibited an improved rate capability at current densities of $0.5-50mA\;cm^{-2}$. The rate capability was higher compared to that of raw activated carbon because N and F codoping increased the electrical conductivity of AC-NF. The developed method for the co-doping of N and F using a single source is cost-effective and yields AC-NF with excellent electrochemical properties; thus, it has promising applications in the commercialization of energy storage devices.

Development of Inverse Solver based on TSVD in Electrical Impedance Tomography (전기 임피던스 단층촬영법에서 TSVD 기반의 역문제 해법의 개발)

  • Kim, Bong Seok;Kim, Chang Il;Kim, Kyung Youn
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.4
    • /
    • pp.91-98
    • /
    • 2017
  • Electrical impedance tomography is a nondestructive imaging technique to reconstruct unknown conductivity distribution based on applied current data and measured voltage data through an array of electrodes attached on the periphery of a domain. In this paper, an inverse method based on truncated singular value decomposition is proposed to solve the inverse problem with the generalized Tikhonov regularization and to reconstruct the conductivity distribution. In order to reduce the inverse computational time, truncated singular value decomposition is applied to the inverse term after the generalized regularization matrix is taken out from the inverse matrix term. Numerical experiments and phantom experiments have been performed to verify the performance of the proposed method.

A Low-Density Graphite-Polymer Composite as a Bipolar Plate for Proton Exchange Membrane Fuel Cells

  • Dhakate, S.R.;Sharma, S.;Mathur, R.B.
    • Carbon letters
    • /
    • v.14 no.1
    • /
    • pp.40-44
    • /
    • 2013
  • The bipolar plate is the most important and most costly component of proton exchange membrane fuel cells. The development of a suitable low density bipolar plate is scientifically and technically challenging due to the need to maintain high electrical conductivity and mechanical properties. Here, bipolar plates were developed from different particle sizes of natural and expanded graphite with phenolic resin as a polymeric matrix. It was observed that the particle size of the reinforcement significantly influences the mechanical and electrical properties of a composite bipolar plate. The composite bipolar plate based on expanded graphite gives the desired mechanical and electrical properties as per the US Department of Energy target, with a bulk density of 1.55 $g.cm^{-3}$ as compared to that of ~1.87 $g.cm^{-3}$ for a composite plate based on natural graphite (NG). Although the bulk density of the expanded-graphite-based composite plate is ~20% less than that of the NG-based plate, the I-V performance of the expanded graphite plate is superior to that of the NG plate as a consequence of the higher conductivity. The expanded graphite plate can thus be used as an electromagnetic interference shielding material.

A study on thermal behavior of energy textile by performing in-situ thermal response test and numerical simulation (현장 열응답 시험과 수치해석을 통한 터널에 적용된 에너지 텍스타일의 열적 거동 연구)

  • Lee, Chul-Ho;Park, Moon-Seo;Min, Sun-Hong;Jeoung, Jae-Hyeung;Choi, Hang-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.325-335
    • /
    • 2010
  • A new geothermal energy source obtained from a tunnel structure has been studied in this paper. The geothermal energy is extracted through a textile-type ground heat exchanger named "Energy Textile" that is installed between a shotcrete layer and a guided drainage geotexitle. A test bed was constructed in an abandoned railway tunnel to verify the geothermal heat exchanger system performed by the energy textile. To evaluate the applicability of the energy textile, we measured the thermal conductivity of shotcrete and lining samples which were prepared in accordance with a common mixture design. An overall performance of the energy textile installed in the test bed was evaluated by carrying out a series of in-situ thermal response test. In addition, a 3-D finite volume analysis (FLUENT) was adopted to simulate the operation of the ground heat exchanger being encased in the energy textile with the consideration of the effect of the shotcrete and lining thermal conductivity.

  • PDF

An Experimental Study on the Thermal Performance Measurement of Vertical Borehole Heat Exchanger(BHE) (수직형 지열 열교환기(BHE)의 열성능 측정에 관한 실험적 연구)

  • Lim Kyoung-Bin;Lee Sang-Hoon;Soung Nak-Won;Lee Chang-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.8 s.251
    • /
    • pp.764-771
    • /
    • 2006
  • Knowledge of ground thermal properties is most important for the proper design of large BHE(borehole heat exchanger) systems. Thermal response tests with mobile measurement devices were first introduced in Sweden and USA in 1995. Thermal response tests have so far been used primarily for in insitu determination of design data for BHE systems, but also for evaluation of grout material, heat exchanger types and ground water effects. The main purpose has been to determine insitu values of effective ground thermal conductivity, including the effect of ground-water flow and natural convection in the boreholes. Test rig is set up on a small trailer, and contains a circulation pump, a heater, temperature sensors and a data logger for recording the temperature data. A constant heat power is injected into the borehole through the pipe system of test rig and the resulting temperature change in the borehole is recorded. The recorded temperature data are analysed with a line-source model, which gives the effective insitu values of rock thermal conductivity and borehole thermal resistance.

Preparation of Ni-PTFE Electrode using Nickel Plating for Alkaline Fuel Cell (니켈도금기술을 이용만 알칼리형 연료전지용 Ni-PTFE전극의 개발)

  • Kim, Jae-Ho;Lee, Young-Seak
    • Journal of Hydrogen and New Energy
    • /
    • v.20 no.4
    • /
    • pp.291-299
    • /
    • 2009
  • Ni-plated polytetrafluoroethylene(Ni-PTFE) particles($25{\mu}m$, $500{\mu}m$) were prepared by using nickel electroless plating. The Ni content in Ni-PTFE particles increased with increasing the amount of reduction agent. At about 53 wt% Ni content, $25{\mu}m$ Ni-PTFE particles showed conductivity of 320S/m. The Ni-PTFE particles were formed into the Ni-PTFE plate using heat treatment at $350^{\circ}C$ under $10{\sim}1000kg/cm^2$. The Ni-PTFE plate displayed the high conductivity of 5100S/m due to the formation of 3-dimentional Ni network. The plate was used as an electrode in an alkaline fuel cell(AFC). In terms of the current density, the Ni-PTFE electrode having higher Ni content(53 wt%) showed improved performance.

Sulfur Tolerance Effects on Sr0.92Y0.08Ti0.5Fe0.5O3-δ as an Alternative Anode in Solid Oxide Fuel Cells

  • Kim, Jun Ho;Yun, Jeong Woo
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.133-140
    • /
    • 2018
  • $Sr_{0.92}Y_{0.08}Ti_{0.5}Fe_{0.5}O_{3-{\delta}}$ (SYTF0.5) is investigated as an alternative anode in $H_2$ fuels containing $H_2S$ (0-200 ppm). Although additional ionic conductivity is introduced by aliovalent substitution of $Ti^{4+}$ by $Fe^{3+}$ in the B-site, the SYTF0.5 has lower electrical conductivity than that of the $Sr_{0.92}Y_{0.08}TiO_{3-{\delta}}$. Due to the mixed ionic and electronic conductive (MIEC) property exhibited in the SYTF0.5 anode, the electrochemical performance of the SYTF0.5 anode is improved, as well as the sulfur tolerance. The maximum power densities in $H_2$ at $900^{\circ}C$ for the SYT anode and the SYTF0.5 anode were 56.9 and $98.6mW/cm^2$, respectively. The maximum power density in the SYTF0.5 anode at 200 ppm of $H_2S$ concentration decreased by only 12.9% (86.3 to $75.2mW/cm^2$).

Effects of Operational Parameters on the Removal of Acid Blue 25 Dye from Aqueous Solutions by Electrocoagulation

  • Balarak, Davoud;Ganji, Fatemeh;Choi, Suk Soon;Lee, Seung Mok;Shim, Moo Joon
    • Applied Chemistry for Engineering
    • /
    • v.30 no.6
    • /
    • pp.742-748
    • /
    • 2019
  • Influence of several experimental parameters (e.g., initial dye concentration, pH, distance between electrodes, applied voltage, electrical conductivity, current density, and reaction time) on the performance of electrocoagulation (EC) process for the removal of acid blue 25 (AB25) was studied. A bipolar batch reactor was used to test the impact of the parameters. The removal efficiency (RE) of AB25 dye was promoted by increasing the contact time, voltage, electrical conductivity, and applied current density. In contrast, RE of AB25 decreased with higher level of AB25 and the longer distance between electrodes. The removal efficiency increased consistently until pH 7, but decreased above pH 7. The maximum efficiency of AB25 removal above 90% was obtained at a voltage of 60 V, reaction time of 90 min, distance between electrodes of 0.5 cm, initial concentration of 25 mg/L, conductivity of 3,000 μS/cm and pH of 7. These results imply that the high RE of AB25 dye from the aqueous solution can be achieved by EC process.