Browse > Article
http://dx.doi.org/10.5229/JECST.2017.8.4.338

Nitrogen and Fluorine Co-doped Activated Carbon for Supercapacitors  

Kim, Juyeon (Energy Materials Center, Korea Institute of Ceramic Engineering & Technology)
Chun, Jinyoung (Energy Materials Center, Korea Institute of Ceramic Engineering & Technology)
Kim, Sang-Gil (EDLC PT, VITZROCELL Co., Ltd.)
Ahn, Hyojun (Department of Materials and Engineering, Gyeongsang National University)
Roh, Kwang Chul (Energy Materials Center, Korea Institute of Ceramic Engineering & Technology)
Publication Information
Journal of Electrochemical Science and Technology / v.8, no.4, 2017 , pp. 338-343 More about this Journal
Abstract
Activated carbon has lower electrical conductivity and reliability than other carbonaceous materials because of the oxygen functional groups that form during the activation process. This problem can be overcome by doping the material with heteroatoms to reduce the number of oxygen functional groups. In the present study, N, F co-doped activated carbon (AC-NF) was successfully prepared by a microwave-assisted hydrothermal method, utilizing commercial activated carbon (AC-R) as the precursor and ammonium tetrafluoroborate as the single source for the co-doping of N and F. AC-NF showed improved electrical conductivity ($3.8\;S\;cm^{-1}$) with N and F contents of 0.6 and 0.1 at%, respectively. The introduction of N and F improved the performance of the pertinent supercapacitor: AC-NF exhibited an improved rate capability at current densities of $0.5-50mA\;cm^{-2}$. The rate capability was higher compared to that of raw activated carbon because N and F codoping increased the electrical conductivity of AC-NF. The developed method for the co-doping of N and F using a single source is cost-effective and yields AC-NF with excellent electrochemical properties; thus, it has promising applications in the commercialization of energy storage devices.
Keywords
Carbon materials; Activated carbon; N; F co-doping; Supercapacitor; Energy storage;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 B.L. Zhao, L.Z. Fan, M.Q. Zhou, H. Guan, S. Qiao, M. Antonietti, M.M. Titirici, Adv. Mater., 2010, 22(45), 5202-5206.   DOI
2 B. Xu, H. Duan, Mo Chu, G. Cao, Y. Yang, J. Mater. Chem. A, 2013, 1(14), 4565-4570.   DOI
3 H. Chen, M. Zhou, Z. Wang, S. Zhao, S. Guan, Electrochim. Acta, 2014, 148, 187-194.   DOI
4 K. Jurewicz, R. Pietrzak, P. Nowicki, H. Wachowska, Electrochim. Acta, 2008, 53(16), 5469-5475.   DOI
5 K. Meng, Q. Liu, Y. Huang, Y. Wang, J. Mater. Chem. A, 2015, 3(13), 6873-6877.   DOI
6 K.S. Kim, S.J. Park, J. Electroanal. Chem., 2012, 673, 58-64.   DOI
7 L. Li, E. Liu, j. Li, Y. Yang, H. Shen, Z. Huang, X. Xiang, W. Li, J. Power Sources, 2010, 195(5), 1516-1521.   DOI
8 G. Nanes, E. Papirer, P. Fioux, F. Moguet, A. Tressaud, Carbon, 1997, 35(2), 175-194.   DOI
9 Y.S. Lee, J. Fluorine Chemistry, 2007, 128(4), 392-403.   DOI
10 K. Wang, M. Xu, Y. Gu, Z. Gu, Q.H. Fan, J. Power Sources, 2016, 332, 180-186.   DOI
11 J.J. Yang, Y.R. Kim, M.G. Jeong, Y.J. Yuk, H.J. Kim, S.G. Park, J. Electrochem. Sci. Technol., 2015, 6(2), 59-64.   DOI
12 Y. Zhang, Y. Zhang, J. Huang, D. Du, W. Xing, Z. Yan, Nanoscale Res. Lett., 2016, 11, 245-251.   DOI
13 B. Li, F. Dai, Q. Xiao, L. Yang, J. Shen, C. Zhang, M. Cai, Energy Environ. Sci., 2016, 9(1), 102-106.   DOI
14 J. Zhou, J. Lian, L. Hou, J. Zhang, H. Gou, M. Xia, Y. Zhao, T. A. Strobel, L. Tao, F. Gao, Nat. Commun., 2015, 6, 8503-8510.   DOI
15 C. Kim, H. Habazaki, S.G. Park, J. Electrochem. Sci. Technol., 2016, 7(3), 214-217.   DOI
16 M.H. Kim, J.H. Yang, Y.M. Kang, S.M. Park, J.T. Han, K.B. Kim, K.C. Roh, Colloids Surf., A, 2014, 443, 535-539.   DOI
17 M. Kota, X. Yu, S.H. Yeon, H.W. Cheong, H.S. Park, J. Power Sources, 2016, 303, 372-378.   DOI